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Remote sensing of canopy chemistry could greatly advance the study and monitoring of functional processes
and biological diversity in humid tropical forests. Imaging spectroscopy has contributed to canopy chemical
remote sensing, but efforts to develop general, globally-applicable approaches have been limited by sparse
and inconsistent field and laboratory data, and lacking analytical methods. We analyzed leaf hemispherical
reflectance and transmittance spectra, along with a 21-chemical portfolio, taken from 6136 fully sunlit
humid tropical forest canopies, and developed an up-scaling method using a combination of canopy radiative
transfer, chemometric and high-frequency noise modeling. By integrating these steps, we found that the ac-
curacy and precision of multi-chemical remote sensing of tropical forest canopies varies by leaf constituent
and wavelength range. Under conditions of varying canopy structure and spectral noise, photosynthetic pig-
ments, water, nitrogen, cellulose, lignin, phenols and leaf mass per area (LMA) are accurately estimated using
visible-to-shortwave infrared spectroscopy (VSWIR; 400–2500 nm). Phosphorus and base cations are re-
trieved with lower yet significant accuracy. We also find that leaf chemical properties are estimated far
more consistently, and with much higher precision and accuracy, using the VSWIR range rather than the
more common and limited visible to near-infrared range (400–1050 nm; VNIR). While VNIR spectroscopy
proved accurate for predicting foliar LMA, photosynthetic pigments and water, VSWIR spectra provided accu-
rate estimates for three times the number of canopy traits. These global results proved to be independent of
site conditions, taxonomic composition and phylogenetic history, and thus they should be broadly applicable
to multi-chemical mapping of humid tropical forest canopies. The approach developed and tested here paves
the way for studies of canopy chemical properties in humid tropical forests using the next generation of air-
borne and space-based high-fidelity imaging spectrometers.
rights reserved.
© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Canopy chemistry both reflects and predicts the functional status
of vegetation and ecosystems, expressing processes ranging from pri-
mary production to decomposition and nutrient cycling. Canopy
chemistry is also often indicative of functional and biological diversity
in ecosystems (Townsend et al., 2008). As a result, chemical remote
sensing has been a focus of research for many years, and much pro-
gress has been made in developing methods for the detection and
mapping of plant chemicals with field, airborne and space-based
technologies (reviewed by Kokaly et al., 2009; Ustin et al., 2009).
The most important technology in this arena continues to be imaging
spectroscopy, also known as hyperspectral remote sensing.

Remote sensing of plant chemistry has a relatively long scientific
history (Gates et al., 1965). Early work focused on linking leaf
visible-to-infrared spectra with leaf photosynthetic pigments, water,
nitrogen (N), cellulose and lignin. This fueled a well-known synthesis
by Curran (1989), who listed the spectral features associated with
these and other leaf chemical constituents. Meanwhile, airborne im-
aging spectroscopy was pursued in an effort to estimate concentra-
tions of foliar N, lignin, and other chemical constituents in forest
canopies (Peterson et al., 1988; Wessman et al., 1988). In the 1990s,
additional studies were undertaken with the goal of generalizing
the methods for spectroscopic remote sensing of canopy chemicals.
The NASA Accelerated Canopy Chemistry Program worked to associ-
ate leaf and canopy spectra with N and lignin content in foliage of
96 forest species (ACCP, 1994). Yet at that time, development of a
general approach to foliar chemical mapping was stymied by meth-
odological limitations. One major problem was the statistical overfit-
ting of high-dimensional, collinear spectral data with each chemical
trait. Another problem occurred when attempting to apply a set of
predictive equations derived from one dataset to another (Grossman
et al., 1996).

In parallel with ACCP, the Leaf Optical Properties Experiment
(LOPEX) generated a spectral and chemical dataset spanning about
50 species, with the main intention of advancing leaf optical models
(Fourty et al., 1996). LOPEX supported the development of several
models, the most notable being PROSPECT (Jacquemoud and Baret,

http://dx.doi.org/10.1016/j.rse.2011.08.020
mailto:gpa@stanford.edu
http://dx.doi.org/10.1016/j.rse.2011.08.020
http://www.sciencedirect.com/science/journal/00344257


3588 G.P. Asner et al. / Remote Sensing of Environment 115 (2011) 3587–3598
1990), which is currently in its fifth version (Feret et al., 2008). While
these leaf models greatly advanced our understanding of photosyn-
thetic pigment, water and total carbon contributions to the optical
spectroscopy of foliage (Jacquemoud et al., 2009), they were not
intended to incorporate all known chemical sources of variability in
leaf spectra. In particular, the models often lack a mechanistic treat-
ment of N, carbon fractions such as lignin and cellulose, and other sec-
ondary metabolites such as phenols.

In recent years, some of these issues have been overcome, and an
ever more consistent set of approaches is being reported. For exam-
ple, Martin et al. (2008) used Airborne Visible and Infrared Imaging
Spectrometer (AVIRIS) and space-based EO-1 Hyperion satellite data
to estimate N content of forest canopies. With partial least squares re-
gression (PLSR) techniques, which directly address data dimensional-
ity and collinearity issues (Martens, 2001), Martin et al. (2008)
showed that canopy N content can be estimated in different ecosys-
tems. This was a major step forward, yet it focused on N, and we do
not know whether this approach would work for other foliar chemi-
cals. Moreover, they spatially integrated leaf N data across species
and with canopy leaf area, thereby going for direct relationships be-
tween plot-scale spectral measurements and canopy-N. This ap-
proach left open the question of whether the spectral variation was
driven solely by leaf N, or by covariances among leaf chemical and
structural properties such as leaf area index (LAI), canopy architec-
ture (e.g. needle vs. broadleaf), and composition (plant families, gen-
era and species).

In 2007, the Spectranomics Project was undertaken to address
these and similar issues by combining chemometric methods, such
as PLSR, with extensive field-based measurements of leaf optical
properties and physical models needed to scale from leaf to canopy
levels (Asner and Martin, 2009). The effort focuses on humid tropical
forest canopies, and therefore is limited to mostly broadleaf species.
Nonetheless, humid tropical forests span a wide range of environ-
ments, and the spectranomics database currently stores about
10,000 tropical forest canopy specimens collected from sites spanning
elevations from sea level to 3660 m, and ranging in mean annual tem-
perature and precipitation of 8–28 °C and 1200–6100 mm yr−1, re-
spectively (http://spectranomics.ciw.edu).

Previously we reported on the use of high-fidelity leaf spectrosco-
py (400–2500 nm) to estimate six foliar chemicals and leaf mass per
area (LMA) in 162 canopy species found along an elevation gradient
in Australian tropical forests (Asner et al., 2009). We found that chlo-
rophyll-a and -b (chl-a, chl-b), carotenoids, water, N, phosphorus (P)
and LMA could be estimated with high precision and accuracy using
PLSR. Combining PLSR with a canopy reflectance model, we also
found that variation in canopy LAI, architecture, and solar and view
geometry has a minimal effect on leaf pigment and LMA estimates
from high-fidelity spectroscopy (Asner and Martin, 2008). However,
variation in canopy structure imparts a larger degrading effect on
the accuracy of leaf N and P estimates from canopy spectra.

Despite the progress made to improve the link between leaf and
canopy spectroscopy and chemical traits in tropical forests, our previ-
ous studies, like others, fell short in providing a general approach that
might be transportable to new settings. Chemometric approaches
such as PLSR, whether used at the leaf level, or embedded in a canopy
model, are subject to instability when calibrations developed with
one dataset are used to predict the chemicals from spectra in another
dataset (Boulesteix and Strimmer, 2006; Martens, 2001). This sug-
gests that a very large set of predictors, spanning as wide a range of
leaf chemical and spectral traits as possible, is required to build the
most general models. This is particularly challenging in humid tropi-
cal forests, where canopy chemical properties have proven to be
among the most diverse on Earth (Fyllas et al., 2009; Townsend et
al., 2008). A second problem with past work involves the application
of “noise-free” PLS regressions to airborne or space-based spectral
data, which does not work well because random and systematic
noise is invariably embedded in the spectral images. Systematic
noise in imaging spectrometer data is dominated by high-frequency
errors and artifacts that remain following atmospheric modeling to
convert radiance spectra to reflectance.

To develop a general approach to high-fidelity spectroscopicmapping
of canopy chemistry in tropical forests, we analyzed leaf hemispherical
reflectance and transmittance spectra, alongwith a 21-chemical portfolio,
in 6136 humid tropical forest canopies, and developed up-scaling
methods using a combination of canopy radiative transfer, PLSR
and high-frequency noise modeling techniques. With this dataset,
we ask: (i) What is the precision and accuracy of 21 chemical deter-
minations using high-fidelity spectroscopy at the leaf level? Are
there global models that can effectively represent all tropical forest
canopies, independent of ecoregion, site, lifeform or taxon?
(ii) With what precision and accuracy can the chemical traits be
estimated at the canopy scale, and against a backdrop of varying
canopy structure? (iii) What is the effect of sensor noise, including
both random and systematic sources of error, on chemical estimates
from canopy spectroscopy?

2. Materials and methods

2.1. Field methods

Samples were collected from 61 sites distributed throughout the
humid tropical forest biome, including in the Neotropics (Mesoamerica
and Amazonia), Pacific Islands, Paleotropics, Caribbean, Australasia, and
Borneo (Fig. 1, Table 1). The dataset is composed of the most common
plant habits found in tropical forest canopies, including tree
(n=5233), liana (648), palm (74), hemi-epiphyte (109), and vine
(51). The dataset also includes 3791 specieswith two ormore replicates
collected within a site, and an additional 2870 species with three or
more replicates collected across sites. We are only interested in humid
forest species, so we controlled for mean annual precipitation (MAP)
of 1200 to 6100 mm yr−1 based on long-term climate records. We did
not control for mean annual temperature (MAT), which ranges from
8 to 28 °C, and elevations of 0–3660 m. Soil type varies strongly across
sites, from extremely nutrient-poor Oxisols (clays) and Entisols
(white sands) to nutrient-rich Inceptisols (Table 1). Detailed informa-
tion and maps for all samples and sites can also be acquired at
http://spectranomics.ciw.edu.

At each site, individual canopies were carefully selected to control
for full sunlight conditions because shading strongly affects leaf chemis-
try and spectroscopy (Lee et al., 1990; Poorter et al., 1995, 2009), and
because canopy reflectance is dominated by upper-canopy, sunlight
leaves in highly foliated vegetation canopies (Asner, 2008; Asner and
Martin, 2008). This process requires that two or more trained workers
agree that the selected canopy has unobstructed exposure to the
sky. Individual canopies meeting this criterion were then marked and
a voucher specimen was collected. Vouchers were matched by local
expert taxonomists to type specimens kept at the National Agrarian
University LaMolinaHerbarium, Peru and theMissouri Botanical Garden,
USA. We also matched genus names to information provided by Kew
Botanic Gardens, UK. Family-level taxonomy followed the Angiosperm
Phylogeny Group III (Stevens, 2001-present). Of the 6136 individuals
reported here, 6095 (99%) have been identified to the genus level,
and 5786 (94%) have definite taxonomic identifications to the species
level. All project reference vouchers are kept at Carnegie Institution
facilities, and reference photos of the specimens can be viewed at
http://spectranomics.ciw.edu.

Leaf collections were conducted using a combination of tree
climbing, shooting, crane, and pole-clipping techniques. Only fully
sunlit branches of mature leaves were taken and sealed in large poly-
ethylene bags to maintain moisture, stored on ice in coolers, and
transported to a local site for processing within 3 h, and often less
than 30 min. Leaves with some epiphylls, signs of disease and recent
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Fig. 1. Map showing the location and number of sites of each canopy leaf sample collection campaign. Full descriptions of the sites and taxa are available on the Spectranomics
Project website at http://spectranomics.ciw.edu.
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flush were permitted to enter the dataset, but only if the leaves
remained in whole form and were not overly damaged. For each sam-
ple, a subset of leaveswas selected from the branches for chemical and
LMA determination in the laboratory. With this chemistry sample,
hemispherical reflectance and transmittance in the 400–2500 nm
range was measured on 12 randomly selected fresh leaf surfaces im-
mediately after acquiring each branch in the field. The spectral mea-
surements were taken at or close to the mid-point between the main
vein and the leaf edge, and approximately half-way from petiole to
leaf tip. Care was taken to avoid large primary or secondary veins,
while allowing for smaller veins to be incorporated into the
measurement.

The spectra were collected with a field spectrometer (FS-3 with
custom detectors and exit slit configurations to maximize signal-to-
noise performance; Analytical Spectra Devices, Inc., Boulder, CO
USA), an integrating sphere designed for high-resolution spectro-
scopic measurements, and a custom illumination collimator (Asner
and Martin, 2008). Twenty-five spectra per sample were averaged
and calibrated for dark current and stray light, then referenced to a
calibration blockwithin the integrating sphere (Spectralon, Labsphere
Inc., Durham, NH). An integrating sphere and collimated light source
are required if directional–hemispherical reflectance and transmit-
tance measurements are desired, and these measurements are re-
quired for use in scaling up to the canopy level using radiative
transfer models (Feret et al., 2008; Jacquemoud et al., 2009; Verhoef
and Bach, 2007). This up-scaling step cannot be achieved without
sphere-based measurements and models that ingest them properly
Table 1
Collection sites and phylogenetic information for the foliar data set.

Political unit Num. sites Elevationa range MAPb range MATc range Soil o

Australia 11 21–1084 1165–3333 18.3–23.7 Alf, En
Costa Rica 9 50–1607 2832–4698 17.7–25.8 And, I
Ecuador 1 1325–1980 3200 18 Inc
Hawaii 9 27–1570 1800–5080 13.2–23.8 And, I
Madagascar 3 330–1118 1700–3020 17–24.3 Ent, O
Panama 4 84–189 1865–3140 26–27.2 Inc
Peru 17 92–3660 2380–6128 8–26.6 Ent, H
Puerto Rico 6 140–910 3460–6096 21.3–25.6 Inc, U
Sarawak 1 70–80 2680 26.6 Ult

a Elevation (m).
b MAP = mean annual precipitation (mm).
c MAT = mean annual temperature (C).
d Soil orders: Alf = Alfisol; And = Andisol; Ent = Entisol; His = Histisol; Inc = Inceptis
(Kokaly et al., 2009). In addition, our experience is that these instru-
ment customizations are necessary to provide leaf spectra that require
minimal manipulation, such as smoothing that tends to remove criti-
cally important spectral features in the data. The high-fidelity mea-
surement capability of our field instruments resulted in calibrated
spectra that did not require smoothing or other filters commonly
used in leaf optical studies.

2.2. Chemical data

The methods for chemical assays were reported in detail previously
(Asner and Martin, 2011). We summarize the minimum, median and
maximum values for each chemical and LMA in Table 2. Chemical
assay protocols, alongwith the instruments and standards, are provided
on the spectranomics website (http://spectranomics.ciw.edu). When
the data were non-normally distributed, we applied a natural logarithm
(loge) transformation. Total C, soluble-C, cellulose, lignin, and phenol
and tannins did not require loge-transformation for statistical
analyses.

It is important to recognize that the range of chemical values in-
corporated into this study is extremely broad, meeting and often ex-
ceeding the range of canopy chemical traits reported for other
individual biomes and most biomes combined (McGroddy et al.,
2004; Poorter et al., 2009; Reich and Oleskyn, 2004; Townsend et
al., 2007; Wright et al., 2004). For example, the range of N and P var-
iation among global terrestrial ecosystems was previously reported as
0.68–4.07% and 0.05–0.23%, respectively (Wright et al., 2004), yet we
rdersd Num. samples Num. families Num. genera Num. species

t, Inc, Oxi, Ult 188 45 121 187
nc, Ult 746 100 321 607

242 51 105 162
nc 180 58 129 156
xi, Ult 624 72 204 426

269 65 180 258
is, Inc, Ult 3338 122 515 2090
lt 104 47 86 101

395 51 108 235

ol; Oxi = Oxisol; Ult = Ultisol.
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Table 2
Leaf chemical properties and leaf mass per area (LMA) for 6136 humid tropical forest
canopies.

Leaf property Median Range Unit of measure

Chlorophyll a 4.78 0.83–15.99 mg g−1

Chlorophyll b 1.78 0.29–5.83 mg g−1

Carotenoids 1.41 0.35–4.32 mg g−1

LMA 100.99 22.21–365.02 g m−2

Water 58.58 37.95–90.79 %
N 1.85 0.56–5.54 %
C 49.1 34.8–57.4 %
Soluble C 45.28 16.19–84.45 %
Hemi-cellulose 11.63 0.00–35.38 %
Cellulose 18.19 5.06–43.59 %
Lignin 22.50 2.71–64.51 %
Phenols 94.58 0.00–309.66 mg g−1

Tannins 40.13 0.00–205.50 mg g−1

P 0.10 0.02–0.86 %
K 0.70 0.13–5.64 %
Ca 0.89 0.00–6.87 %
Mg 0.25 0.02–1.50 %
Zn 11.41 1.86–468.40 μg g−1

Mn 88.03 3.76–7331.67 μg g−1

B 23.01 2.82–321.89 μg g−1

Fe 49.44 9.36–9470.68 μg g−1
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compiled foliar data with a range of 0.56–5.54% for N and 0.020–
0.86% for P. Our LMA range goes from 22.2 to 365.0 g m−2, which ex-
ceeds the range for nearly all biomes combined, both terrestrial and
aquatic (Poorter et al., 2009). As a result, we believe our chemical,
and thus spectral, dataset meets or exceeds the range of values
found throughout the world's humid tropical biome, and thus we
contend that the results presented here are globally applicable.

2.3. Canopy reflectance modeling

Weprojected the leaf reflectance and transmittance spectra collected
in thefield to the canopy level using the4SAIL2 canopy radiative transfer
model (Verhoef and Bach, 2007). The model simulates top-of-
canopy spectral reflectance based on the measured leaf hemispherical–
directional reflectance and transmittance spectra, along with variation
of leaf area index (LAI), leaf angle distribution, and other crown
geometric–optical properties. Ranges for LAI and other structural pa-
rameters for each growth habit (tree, liana, hemi-epiphyte, palm,
vine) are provided in Table 3, and were compiled from Asner et al.
(2003) and Asner and Martin (2008). For each specimen, a randomly-
selected combination of canopy structural parameters based on growth
habit was combined with the field-measured leaf spectra to generate a
canopy reflectance signature. This was repeated 25 times per specimen,
and the resulting 25 reflectance signatureswere recorded for each spec-
imen for subsequent analyses.
Table 3
Ranges of canopy structural parameters randomly selected during canopy radiative
transfer model simulations. LAI = leaf area index; LAD = leaf angle distribution; Cv =
crown covering the ground at nadir; Zeta = ratio of crown diameter to tree height.

Plant habit LAI LADa Cv Zeta

Tree 3.0–7.0 −0.4 to 0.4 0.6–0.8 0.2–0.7
−0.1 to 0.2

Liana 1.0–4.0 −0.1 to 0.3 0.7–0.9 0.1–0.3
0.3 to 0.6

Palm 2.0–5.0 −0.8 to −0.2 0.7–0.9 0.1–0.3
Vine 1.0–2.5 −0.1 to 0.3 0.7–0.9 0.1–0.3

0.3 to 0.6
Hemi-epiphyte 3.0–7.0 −0.4 to 0.4 0.6–0.8 0.2–0.6

−0.1 to 0.2

a Leaf angle distribution isdescribed bya two-parametermodel,with thefirst parameter
controlling average leaf inclination and the second parameter controlling bimodality of the
leaf angle distribution (Verhoef and Bach, 2007).
2.4. Chemometric analyses

We used PLSR analysis (Haaland and Thomas, 1988) to determine
which leaf and canopy properties can be remotely sensed using high-
fidelity spectroscopy. Here we repeated the analyses to test two com-
mon configurations in imaging spectroscopy: the most common is
VNIR (visible to near-infrared; 400–1050 nm) such as the Compact Air-
borne Spectrographic Imager or CASI (Blackburn, 2002); and the less
common VSWIR (visible to shortwave infrared; 400–2500 nm) such
as AVIRIS (Green et al., 1998). Leaf reflectance and transmittance
were tested using the field-based measurements following re-
sampling to 10 nm full-width half-maximum bandwidth spanning
the VNIR and VSWIR spectra ranges. To more closely represent air-
borne data, canopy reflectance was tested in a similar configura-
tion but with the 1350–1450 nm and 1850–1975 nm atmospheric
water vapor regions removed from the simulated VSWIR data
(Gao and Goetz, 1995).

To avoid overfitting, the number of factors used in the PLSR anal-
ysis was determined by minimizing the Prediction Residual Error
Sum of Squares (PRESS) statistic (Chen et al., 2004). The PRESS statis-
tic was calculated through a cross-validation prediction for each
model. This cross-validation procedure iteratively generates regres-
sion models while reserving 10% of the samples from the input data
set until the root mean square error (RMSE) for the PRESS statistic
is minimized. The models were then used to estimate each leaf prop-
erty from the original spectral data. Validation statistics were applied
to these models to determine the precision and accuracy of each
chemical estimate from spectroscopy, as well as to quantify the role
of differing spectral configurations in the model (adding noise or
multiple spectra with randomly varying structural properties). The
coefficient of determination (r2) was used to assess the precision of
the PLSR models developed, while the RMSE between calibration
and prediction results yields an assessment of the model accuracy.
Similar to Feilhauer et al. (2010), RMSE values were often standard-
ized to the percentage of the response range (%RMSE) to simplify
comparison across chemical traits.

2.5. Spectral configurations

PLSR precision and accuracy were first examined using measured
leaf reflectance and transmittance, and then using single-canopy sim-
ulations based on these leaf spectra (n=6136). Additional variation
was subsequently incorporated as explained here. Twenty-five spec-
tra per sample, derived from the canopy modeling described earlier
with varying canopy structural parameters were created for each
sample (n=6136×25=153,400), and were integrated into the
PLSR model. Due to processing limitations incurred when all 25 spec-
tra were included for a large number of samples, we tested howmany
spectra (up to 25) are needed to accurately incorporate canopy struc-
tural variability into the spectra using a randomly-selected subset of
853 samples. Three different PLSR models were built and compared
based on these 853 samples, one using an average of the 25 spectra
per sample as outlined above, a second using five randomly selected
spectra per sample, and a third using all 25 spectra. This was tested
using both VSWIR and VNIR wavelength regions.

In addition to structural variation, the impact of high frequency
noise on PLSR predictionswas investigated. This noise is primarily com-
posed of sensor noise and residual artifacts following atmospheric cor-
rection. To apply noise to the simulated canopy spectra, data from
actual AVIRIS imagery taken over tropical forest was used as a source
of noise for VSWIR simulations. A Fast Fourier Transform (FFT)was per-
formed on a set of 400 image pixels of sunlit canopy crowns. The FFT
transform was performed in three wavelength segments: 366–
1333 nm, 1432–1772 nm, and 2048–2497 nm. For VNIR spectra, the
FFT was also performed in 3 segments: 385–678 nm, 687–763 nm,
and 772–1055 nm. For each simulated canopy spectrum, the FFT
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Fig. 2. Median and range of leaf hemispherical reflectance and transmittance collected
from 6136 individual canopies comprised 2419 species from 61 tropical forest sites.
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transformwas also performed on the same segments and one of the 400
noise source spectrawas randomly selected. The higher frequency com-
ponents of the selected Fourier transformed noise spectrum were
extracted and copied into the Fourier-transformed modeled spectrum
for each segment. The inverse of the FFT was then computed on
each segment of the composited spectra, and the segments were com-
bined to create a single spectrum. This resulted in noisy canopy spectra
that carry the shape and magnitude of the original noise-free spectra,
but with higher frequency variation of the spectra collected from the
image.

Finally, we assessed the effect of brightness normalization, devel-
oped by Feilhauer et al. (2010), on PLSR models containing full struc-
tural and spectral variability. The analysis was applied during the
creation of two PLSR models, one for the VSWIR and one for the
VNIR, utilizing all samples (n=6136). In each model, five spectra of
varying canopy structure, containing noise, were used for each
sample.

2.6. General model development

To determine how many samples are needed to build the most
general and accurate PLSR model that is insensitive to potential
local influences of site, lifeform, and taxonomy, we built PLSR models
using an increasing number of samples randomly drawn from the
spectranomics database, in increments of 250 up to 5500 samples.
At each increment, we tested the model at one arbitrarily selected
site, Betampona in Madagascar (Fig. 1), which contains a large num-
ber of samples (n=330). This site was not included in the model cre-
ation step. We repeated this entire process 10 times, each repetition
created with randomly selected spectra and chemistry, increasing in
volume from 250 to 5500 samples. The best model was selected
based on minimum regression r2-values (precision) and %RMSE (ac-
curacy) among the 10 runs. These analyses were carried out using
both VSWIR and VNIR spectral configurations.

We carried out additional analyses to create the most general PLSR
models for VSWIR and VNIR configurations. Twenty-five different cal-
ibration models were created using a random selection of samples
from the global database, with the number of samples in each
model determined from previous analyses on the Betampona site.
Each of these 25 models was then used to predict 500 new, randomly-
selected test samples (not used in model calibration) from the spectra-
nomics database. This approach avoided possible biases incurred by
using samples from any one site or taxonomy.

3. Results and discussion

3.1. Leaf optical properties

We found extremely broad variation in leaf reflectance and trans-
mittance spectra among the 6136 humid tropical forest canopies
(Fig. 2). This spectral variation in fully formed leaves, consistently
taken from full-sunlight, top-of-canopy positions and measured
using identical instrumentation and methods, exceeds most of the
variation reported within and among other vegetation types, ecosys-
tems or biomes (Asner, 1998; Curran et al., 1992; Feret et al., 2008;
Gitelson and Merzlyak, 1997; Poorter et al., 2000; Roberts et al.,
1998, 2004; Sims and Gamon, 2002; Weiser et al., 1986; Williams,
1991). Although the widest reflectance range was observed in the
near-infrared (NIR; 750–1300 nm), the largest coefficients of varia-
tion were found in the shortwave-infrared (SWIR; 1500–2500 nm),
followed by the visible spectral region (VIS; 400–750 nm) (Fig. 2).
This confirms previous findings indicating that, although the reflec-
tance range is lowest in the VIS and SWIR, the variation among cano-
pies is proportionally greater in these spectral regions (Asner and
Martin, 2008). This wide variation is requisite to developing the
most general chemometric models, here at leaf and then at canopy
scales.

3.2. Modeled canopy reflectance

High leaf reflectance and transmittance variability reported in
Fig. 2, combined with known canopy structural variation in each
plant habit (Table 3), led to highly diverse canopy reflectance spectra
(Fig. 3). These results include the random and systematic sensor noise
expressed in AVIRIS (Fig. 3a) and Carnegie Airborne Observatory
(CAO)-Alpha system data (Fig. 3b), the latter of which incorporates
a customized CASI instrument (Asner et al., 2007). The structure of
the noise differs by sensor type, owing to differences in instrument
performance and effects of spectral range on atmospheric correction
(Green et al., 2003). Similar to leaf-level findings, the largest spectral
coefficients of variation at the canopy level were observed in the VIS
and SWIR regions.

Local-scale variation in the shape and brightness of the spectrawas
also assessed, with a typical example shown from a site at Betampona,
Madagascar (Fig. 3c–d; n=330). Maximal variation was again ob-
served in the VIS and SWIR from 2000 to 2500 nm. High site-level
variation is important because chemometric methods, such as PLSR
and others like principal components analysis (PCA), operate on rel-
ative variation among the spectra analyzed. By comparing spectra
from the Betampona site to the global data set, it is apparent that
shape of spectrum was similar; however, the range in spectral vari-
ation is smaller at Betampona. The median values were also similar.

3.3. Noise-free leaf and canopy PLSR

PLSR modeling results using “noise-free” VSWIR reflectance and
transmittance spectra indicated that chl-a, carotenoids, LMA, water,
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N, C, cellulose and phenols can be estimated with the highest accura-
cies at the leaf level (Table 4). For these leaf properties, regression
r2-values and RMSE ranged from0.69 to 0.89 and 4.5–8.5%, respectively.
Table 4
Noise-free PLSR prediction results using leaf reflectance and transmittance spectra in
the VSWIR or VNIR wavelength ranges. Regression coefficient is the r2-value of the
validation, and %RMSE is normalized as a percentage of the data range.

Parameter Reflectance Transmittance

VSWIRa VNIRb VSWIR VNIR

r2 %RMSE r2 %RMSE r2 %RMSE r2 %RMSE

Chlorophyll a 0.80 6.8 0.76 7.9 0.83 6.2 0.72 7.0
Chlorophyll b 0.79 6.7 0.76 8.0 0.82 6.2 0.72 6.8
Carotenoids 0.76 8.0 0.69 9.6 0.79 8.1 0.66 9.4
LMA 0.86 5.9 0.82 6.6 0.89 4.7 0.77 5.7
Water 0.88 5.2 0.76 5.0 0.90 4.3 0.72 5.5
N 0.77 7.9 0.59 10.1 0.81 7.1 0.55 9.9
C 0.71 8.2 0.43 10.7 0.74 8.8 0.43 11.3
Soluble C 0.63 10.6 0.30 17.4 0.67 10.3 0.27 19.7
Hemi-cellulose 0.60 9.6 0.32 11.2 0.62 8.7 0.36 12.4
Cellulose 0.77 6.4 0.27 16.4 0.82 7.1 0.23 18.1
Lignin 0.62 10.0 0.32 13.2 0.65 9.9 0.31 13.1
Phenols 0.74 9.3 0.36 12.7 0.76 8.7 0.41 16.0
Tannins 0.62 11.4 0.28 14.3 0.63 10.6 0.32 17.5
P 0.63 11.6 0.51 13.4 0.68 11.7 0.47 12.5
K 0.51 13.5 0.38 14.6 0.55 13.5 0.37 16.1
Ca 0.65 9.6 0.32 14.7 0.69 8.6 0.35 16.7
Mg 0.57 12.0 0.33 15.6 0.61 9.9 0.33 16.1
Zn 0.26 21.2 0.19 19.7 0.27 20.5 0.18 20.0
Mn 0.24 17.9 0.12 23.5 0.29 19.3 0.14 24.2
B 0.39 17.9 0.22 16.7 0.43 15.9 0.26 20.2
Fe 0.46 7.2 0.26 9.4 0.48 9.6 0.33 14.2

a VSWIR = visible to shortwave-infrared (400–2500 nm).
b VNIR = visible to near-infrared (400–1050 nm).
Other well-predicted chemicals included soluble C, hemi-cellulose,
lignin, tannins, P, K, Ca and Mg (r2=0.48–0.65; RMSE=8.9–13.8%).
Surprisingly, even the remaining four metals (Zn, Mn, B, and Fe) dis-
played weaker yet significant signal, with r2-values ranging from 0.19
for Mn to 0.40 for Fe, and %RMSE remains below 22% in all cases.
Latent vector analysis indicated that all regions of the spectrum
were important to the predictions, and while we do not show
the spectral weightings here since there were a large number of
chemicals tested, they were generally similar in shape and magnitude
to those reported by Asner and Martin (2008).

Accuracy was reduced when predicting leaf chemical traits with
data limited to the VNIR spectral range (Table 4). Chemical trait esti-
mates most negatively affected by the reduced VNIR sampling includ-
ed total C, carbon fractions, phenols and tannins, with prediction
accuracy dropping by 40–75%. N, P, and K showed a decrease in accu-
racy by less than 28%. In contrast, leaf chemical traits showing the
greatest absorption and scattering in the 400–1050 nm wavelength
range, including photosynthetic pigments, LMA and water content
(Curran, 1989; Jacquemoud et al., 1995), had r2-values that decreased
by less than 20% when switching from VSWIR to VNIR sampling
(Table 4).

When projecting leaf spectra to the canopy level while including
canopy structural variation, but without incorporating noise, most
chemical traits were well estimated when using the VSWIR spectrum
(Fig. 4). Best predicted traits were LMA and water (r2=0.89;
RMSEb6%). Photosynthetic pigments, N, cellulose and phenols were
also estimated with relatively high precision and accuracy (r2N0.75;
RMSEb8%). Other chemistries predicted with greater than 50% accu-
racy (RMSEb12%) were C, the remaining carbon constituents (solu-
ble-C, hemi-cellulose, lignin, tannins), P, and base cations (K, Ca,
and Mg). Other micronutrients were less well predicted, but still re-
trievable with a range in r2-values of 0.25–0.44 and RMSE=9–21%.
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Using VSWIR spectra and no added noise, the strength of the PLSR
results increased by ~2.5% following up-scaling to the canopy level
(Table 4, Fig. 4a). Asner and Martin (2008) observed this in a past
study, highlighting the role that light scattering and absorption play
in enhancing spectroscopic differences among canopies under condi-
tions of relatively high LAI or leaf volume. However, similar to the leaf
level, when restricted to the VNIR range (400–1050 nm), the ability
to predict canopy chemical traits was reduced in many cases.
Photosynthetic pigments, water, LMA, and N remained relatively pre-
cise and accurate, with r2=0.58–0.79 and RMSEb11%. However, pre-
dictions of other chemical properties decreased by 50–75% (Fig. 4b).
In particular, estimates of soluble C, cellulose, lignin, phenols and tan-
nins were very negatively impacted by using VNIR spectra. These re-
sults confirm, and further provide quantitative detail on, the value in
using VSWIR (400–2500 nm) measurements for canopy chemical
studies (Ebbers et al., 2002; Kokaly et al., 2009; Skidmore et al., 2010).
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3.4. Canopy PLSR with sensor noise and structural variation

Incorporation of sensor noise is essential to a more realistic use of
PLSR approaches for chemical analysis of airborne or space-based im-
aging spectrometer data. Overall, we found that noise negatively af-
fects PLSR results, but it does so to varying degrees depending on
wavelength range and chemical constituent (Fig. 4). Chemicals that had
previously been well predicted using VSWIR models without noise –

photosynthetic pigments, water, LMA, N, phenols and tannins – were
minimally affected when noise was added (Fig. 4a). For these leaf
properties, r2-values decreased by 0.01–0.04, while associated RMSE
values increased by less than 2%. Other less well predicted chemicals
displayed larger decreases in r2-value (0.03–0.13) and/or increases in
RMSE (1–5%), but not always both. When only the VNIR was used,
noise had a proportionally larger negative effect on the prediction of
all chemicals (Fig. 4b), with r2-values decreasing 0.11–0.22 and RMSE in-
creasing by up to 8% for the well predicted canopy traits. Changes were
less pronounced for other chemistries where r2-values were already
low prior to adding noise.

Brightness normalization of either VNIR or VSWIR data had a neg-
ligible effect on the accuracy of chemical estimates using PLSR on the
modeled canopy spectra. When the VSWIR wavelength range was
used, brightness normalization decreased RMSE values by less than
0.8
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2% for a quarter of all chemical traits (data not shown). With the
VNIR model, 10 chemical traits exhibited a 1–3% improvement
based on RMSE values. In both cases, r2-values changed by only
0.01. These results do not discount the work of Feilhauer et al.
(2010), but instead show that incorporating noise and canopy struc-
tural uncertainty via radiative transfer modeling, prior to using PLSR
for chemometric analysis, is another way to accommodate the inher-
ent brightness variation in canopy spectra when applying PLSR
methods. Specifically, PLSR includes an internal normalization step
(Martens, 2001), so including brightness variation due to canopy
structural variability, a priori, is one way to accommodate it when
up-scaling leaf spectral measurements for use in creating PLSR
models for actual airborne or satellite imaging spectrometers.

3.5. General model stabilization

The number of samples required to develop a stable global model
was determined by building calibration models of increasing sample
size (incrementing by 250) and then predicting one arbitrarily select-
ed site, Betampona, Madagascar, which contained many samples
(n=330). With the VSWIR spectra, the precision of calibration, aver-
aged over 10 different model runs incorporating randomly-selected
calibration samples (see Materials and methods), initially decreased
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and then remained nearly constant once about 2500 samples were in-
corporated into the model (Fig. 5a). However, the number of required
samples did noticeably vary by chemical trait. Well-predicted leaf
properties, such as LMA and water content, were also relatively stable
throughout the experiment. Other chemicals including photosynthet-
ic pigments, C, N, phenols and cellulose stabilized after about 1250
samples, reaching stable calibration r2-values of 0.67–0.79. Still
other, less accurately predicted constituents (P, carbon fractions and
cations) stabilized after including 2250 samples, with resulting
r2-values 0.49–0.59.

In contrast to the calibration results (Fig. 5a), the precision (r2) of
leaf chemical predictions from canopy spectra at the Madagascar test
site initially increased for many chemical traits as the number of cal-
ibration samples increased (Fig. 5b). The r2-values usually reached an
asymptote when ~2500 samples were used, but the overall prediction
precision among leaf properties did not always follow the same order
as observed during calibration. These differences could be due to the
particular canopy chemical distributions found at the Betampona test
site, or due to the combination of the site's chemical distribution rel-
ative to the distribution of chemicals in the calibration samples. Irre-
spective of the final prediction accuracy, the reversed pattern of rising
to a maximum at 2500 samples indicates that, although increasing
the sample size lowers the calibration precision slightly due to the
CLMAChl a

Hemi-cellulo

Soluble C

N

Water

Car

Chl b

0.8

1.0
(a)

0.4

0.6

0.0

0.2

0 1000 2000

0 1000 2000

R
eg

re
ss

io
n 

co
ef

ffi
ci

en
t o

f c
al

ib
ra

tio
n 

(r
2 )

R
eg

re
ss

io
n 

co
ef

ffi
ci

en
t o

f p
re

di
ct

io
n 

(r
2 )

1.0
(b)

0.6

0.8

0.2

0.4

Number of Ca

0.0

Fig. 6. Calibration and prediction statistics for PLSR models of increasing sample size using
estimated.
incorporation of additional canopy variation, this variation is largely
accommodated at the chemical prediction step.

The VNIR spectra proved less sensitive to the number of samples
used to build the PLSR calibration and prediction models, reaching
stable values when 1000 samples were included (Fig. 6). The lower
sensitivity and faster stabilization of the VNIR dataset results from
the fact that 400–1050 nm spectra have fewer degrees of freedom
in the spectra as compared to full-range VSWIR spectra. However,
overall VNIR performance was much lower in comparison to the
same analyses using VSWIR data. Well-estimated leaf properties
(LMA, water and photosynthetic pigments) had calibration accuracies
of 0.52–0.61. Below this, N and P had r2-values of 0.36 and 0.26, re-
spectively, while the precision of the remaining chemical estimates
was less than 0.20.

3.6. Creating a global model

Because model stabilization was achieved when 2500 samples
were incorporated into the calibration, we used this data volume
threshold to test model repeatability at a global scale. Twenty-five
different calibration models were built incorporating 2500 randomly-
selected samples from around the world. Each model was then used
to predict 500 new test samples that were also randomly selected
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from the spectranomics database. This was done to avoid possible bias
from the suite of chemicals found at a given site. Although stabilization
was reached with fewer samples during the VNIR calibration model,
there was no drawback to using 2500 samples as was required for the
model using the VSWIR spectrum. Therefore, we used the same number
of samples for both tests.

The calibration and prediction results were very similar for all
chemical properties in each of the 25 simulations, with means
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deviating by a maximum r2-value of 0.04 for K and Mg when using
VSWIR spectra (Fig. 7a, Appendix 1). The global models show that
chl-a, chl-b, carotenoids, LMA, water, N, cellulose and phenols were
consistently predicted with the high precision (r2N0.75) and high ac-
curacy (RMSEb15%). Other leaf constituents such as total C, soluble C,
lignin, hemi-cellulose, and tannins were predicted with moderate
precision and high accuracy. P, K, Ca andMgwere also retrieved, albe-
it with lower precision. Critically, we found that variation among the
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25 global model runs was small, with standard deviations in calibra-
tion (n=2500) and prediction (n=500) r2-values≤0.02 and
RMSE≤1.7% for well-predicted chemical constituents using VSWIR
spectra. Maximum variation was observed among the weakest pre-
dictions for Zn, Mn, B and Fe, with a worst-case standard deviation
in r2-value of 0.06 for Zn and RMSE of 11% for Mn. The prediction
equation coefficients are provided for reference in Appendix 2.

The differences between calibration and prediction performance,
as well as variation among model runs, for the VNIR case paralleled
the VSWIR results (Fig. 7b, Appendix 1). However, as found through-
out this study, the accuracy and precision of the results were lower
for all leaf properties when limited to the VNIR spectral range.
Whereas photosynthetic pigments, LMA and water can be estimated
with moderate precision and good accuracy using VNIR measure-
ments, all other foliar elements and compounds cannot be reliably es-
timated using the approach developed here.

4. Conclusions

Remote sensing of canopy chemistry is essential to understanding
changes in the functional and biological diversity of tropical forests. A
major step toward reaching the goal of accurate canopy chemical
mapping rests in the development of a general, transportable and
scalable approach using high-fidelity spectroscopy. Here we found
that a number of chemical traits can be universally estimated using
a combination of globally-distributed, consistently measured leaf
spectral and chemical databases, PLSR analysis, and radiative transfer
modeling that incorporates canopy structural variability as well as
sensor noise and atmospheric correction errors. Even with these
steps carefully coordinated, our ability to do multi-chemical remote
sensing in tropical forests varies by chemical constituent and by
wavelength region. Under conditions of varying canopy structure
and spectral noise, we are best able to estimate photosynthetic pig-
ments, water, LMA, N, several carbon fractions such as cellulose and
lignin, and phenols using full-range VSWIR measurements. Foliar P
and base cations are somewhat less well retrieved globally, but they
do remain measurable with relatively low RMSE. We found this to
be a general and repeatable result, independent of site conditions,
taxonomic composition or phylogenetic history, and thus we believe
this is an approach that will be broadly applicable to multi-chemical
mapping of humid tropical forest canopies.

Finally, we found that leaf chemical properties are estimated far
more consistently, and with much greater precision and accuracy,
using the VSWIR (400–2500 nm) spectrum rather than with VNIR
(400–1050 nm) observations. Differences in performance varied by
chemical trait, and VNIR remote sensing performed well for three
photosynthetic pigments, LMA, and water concentrations. However,
using the full-range VSWIR spectrum provided a far more stable solu-
tion for three times the number of canopy chemical traits (and LMA)
than could be achieved with VNIR measurements. Whereas VNIR im-
aging sensors have becomequite common, a relatively few high-fidelity
VSWIR spectrometers are currently available onboard aircraft, and
none are available from space. AVIRIS is somewhat unique, proving its
highfidelity following amajor upgrade in 2005. Other sensors including
EO-1 Hyperion have proven difficult to use for canopy chemistry appli-
cations due to issues of sensor fidelity (Asner et al., 2004; Kokaly et al.,
2009). A next generation of airborne, very high fidelity imaging spec-
trometers has just been launched, with the CAO-AToMS flying
now (http://cao.ciw.edu) to utilize techniques such as the spectra-
nomics approach presented here for humid tropical forests.
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