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Summary

� Spectral properties of foliage express fundamental chemical interactions of canopies with

solar radiation. However, the degree to which leaf spectra track chemical traits across environ-

mental gradients in tropical forests is unknown.
� We analyzed leaf reflectance and transmittance spectra in 2567 tropical canopy trees com-

prising 1449 species in 17 forests along a 3400-m elevation and soil fertility gradient from the

Amazonian lowlands to the Andean treeline. We developed quantitative links between 21 leaf

traits and 400–2500-nm spectra, and developed classifications of tree taxa based on spectral

traits.
� Our results reveal enormous inter-specific variation in spectral and chemical traits among

canopy trees of the western Amazon. Chemical traits mediating primary production were

tightly linked to elevational changes in foliar spectral signatures. By contrast, defense com-

pounds and rock-derived nutrients tracked foliar spectral variation with changing soil fertility

in the lowlands. Despite the effects of abiotic filtering on mean foliar spectral properties of

tree communities, the spectra were dominated by phylogeny within any given community,

and spectroscopy accurately classified 85–93% of Amazonian tree species.
� Our findings quantify how tropical tree canopies interact with sunlight, and indicate how to

measure the functional and biological diversity of forests with spectroscopy.

Introduction

The spectroscopy of foliage has long been recognized as funda-
mental to understanding the interaction of plants with solar radi-
ation, as well as for monitoring vegetation with remote sensing
(Gates et al., 1965; Goetz et al., 1985). Spectral reflectance and
transmittance properties of leaves are determined by plant chemi-
cal adaptations to environmental conditions including climate,
nutrient availability and biotic interactions. Foliar nitrogen (N),
photosynthetic pigments including chlorophylls and carotenoids,
structural compounds such as lignin and cellulose, soluble carbon
(C), and water largely control foliar spectral properties (Curran,
1989). Additional nutrients such as phosphorus (P), base cations
(calcium (Ca), potassium (K), and magnesium (Mg)) and a suite
of micronutrients play an indirect role in determining foliar
spectra (Ustin et al., 2004). An overarching additional control is
leaf mass per unit area (LMA; units of g m�2), which expresses a
trade-off between the energetic cost of leaf construction and the
achieved light intercepting area (as reviewed by Poorter et al.,
2009). Long-term adaption of plants to particular environmental
conditions may also impart phylogenetic patterns in these
chemical traits (Kursar et al., 2009), which could translate to phy-
logenetic patterns in foliar spectral properties. Currently, how-
ever, the linkages between environment, phylogeny, and the

spectroscopy of plant foliage remain poorly understood for most
ecosystems.

Humid tropical forests blanket an enormous range of environ-
mental conditions mediated by geologic substrate, soils, elevation
and climate. Recent studies highlight the interplay between these
environmental factors and phylogeny in creating chemical diver-
sity among tropical forest canopies (Fyllas et al., 2009). At the
growth-form level, canopy trees invest more in chemicals support-
ing longevity and defense, such as lignin, cellulose and polyphe-
nols, than do canopy lianas (Asner & Martin, 2012). By contrast,
lianas invest more than trees in light capture and growth chemicals
such as N, P, chlorophyll and carotenoids, but they do so primar-
ily in warmer and sunnier environments. Within a given growth
form, soil fertility also imparts major differences in foliar chemical
investment. For example, dystrophic soils common to tropical
lowlands in Amazonia contain tree species that invest more in lon-
gevity and defense chemicals than do other tree species on neigh-
boring high-fertility soils (Fine et al., 2006).

A recent study of thousands of tree species in Peru revealed
that 3400 m of elevation gain from the Amazonian lowlands to
the Andean treeline imparts a nested pattern in forest canopy
chemical traits (Asner et al., 2014). This pattern links variation in
soils and elevation to rock-derived foliar nutrients, and foliar
nutrients to divergent strategies of C and defense compound
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allocation among co-existing species. Despite strong elevation-
dependent changes in multiple foliar chemicals, the phylogenetic
organization of chemical traits remains very strong in any given
forest type along the Andes-to-Amazon elevation gradient. Given
the existence of these chemical variations within and across Ama-
zonian communities, we think that a similar pattern may exist in
leaf optical traits, if the spectra are quantitatively linked to chem-
istry. Moreover, if the optical properties of canopy foliage track
both environmental and taxonomic variation in forest composi-
tion, then the spectra may allow us to quantify functional and
biological diversity from leaf-, canopy- and stand-level remote
sensing. Currently, however, the degree to which leaf spectral
properties track changes in chemical traits and taxonomic com-
position on tropical elevation and soil gradients is unknown.

We analyzed leaf reflectance and transmittance spectra at 17
forest sites along an Andes-to-Amazon elevation and soil gradient
described by Asner et al. (2014). We asked: How do leaf spectra
change across tree communities at different elevations and on dif-
ferent soils? How does the optical variability within species (intra-
specific) compare to the variability between them (inter-specific),
at site and regional levels? Do the leaf spectra quantitatively repre-
sent the chemical traits in canopy leaves collected along elevation
and soil fertility gradients? For chemical traits linked to the spec-
tral properties of Amazonian canopy leaves, how strong a role
does phylogeny play in explaining the variation?

Materials and Methods

Field sites

We collected top-of-canopy leaf samples from 2567 individual
trees comprising 1449 species (of these species, 557 had two to

13 replicates) in 17 forests arrayed by elevation and soil type in
northern, central and southern Peru (Table 1, Supporting Infor-
mation Table S1). Our collection represents the majority of can-
opy tree species found throughout the western Amazon (Gentry,
1993). Along the elevation gradient, mean annual precipitation
varies from 2448 to 5020 mm yr�1. Mean annual temperature
changes from 26.6°C in the warmest lowland Amazonian site to
8.0°C at the Amazonian treeline in the Andes. There is a negative
linear relationship between mean annual temperature and
elevation (Table 1).

Soils at elevations > 600 m are comprised of relatively high-fer-
tility Inceptisols and Entisols (Table 1). In the lowlands (< 600 m
above sea level (asl)), soils vary among three taxonomic orders:
Ultisols on low-fertility terra firme clay substrates, Inceptisols on
inactive high-fertility floodplains of late Holocene age, and Enti-
sols in two regions in northern Peru. The lowland Entisols are
white sand substrates associated with very low nutrient availabil-
ity (Fine et al., 2004). We analyzed the canopy foliage with
respect to all sites, as well as when considering only higher fertil-
ity substrates. These higher fertility sites have a history of scien-
tific study (Quesada et al., 2009), indicating that they can be
treated as nutrient-rich relative to the remaining lower fertility
sites. Our delineation of a subset of higher fertility sites is also
supported by site-averaged foliar N : P values (Table 1); N : P
ratios below 14–16 suggest weak P limitation of primary produc-
tion (Townsend et al., 2007).

Leaf collections

Our sampling strategy focused on exhaustive surveys of sunlit
canopy tree species, both common and rare, over forest commu-
nity areas of up to 600 ha, directed by historical surveys from

Table 1 Description of 17 sites studied for tree foliar spectroscopy and chemistry in the Andean-Amazon region, sorted by mean elevation above sea level
(asl)

Site name Code Center latitude Center longitude Elevation (m) MAP (mm) MAT (°C) Soil order Foliar N : P

Allpahuayo 1 ALP1 �3.963324 �73.42315 123 2760 26.3 Ultisol 23.3
Jenaro Herrera 1 JH1 �4.899687 �73.65045 124 2700 26.6 Ultisol 27.9
Jenaro Herrera 2 JH2 �4.902867 �73.63391 124 2700 26.6 Entisol 22.7
Jenaro Herrera 3* JH3 �4.912412 �73.72774 124 2700 26.6 Inceptisol 12.2
Allpahuayo 2 ALP2 �3.963117 �73.42817 130 2760 26.3 Entisol 21.8
Inkaterra* INK �12.53272 �69.04776 180 2600 24.7 Inceptisol 13.6
Tambopata 1 TAM �12.96661 �69.48691 213 2600 24.0 Ultisol 16.9
Los Amigos 1* LA1 �12.56920 �70.09325 235 2700 24.0 Inceptisol 13.8
Los Amigos 2 LA2 �12.56019 �70.10145 260 2700 24.0 Ultisol 19.8
Paujil 1 PJ1 �10.32572 �75.26213 420 5020 23.1 Ultisol 24.3
Paujil 2 PJ2 �10.33080 �75.26130 632 5020 23.1 Entisol 30.3
Huampal* HPL �10.18659 �75.57680 1040 2380 22.6 Inceptisol 12.9
San Pedro 1* SP1 �13.05084 �71.53432 1500 4628 18.5 Inceptisol 14.4
San Pedro 2* SP2 �13.04718 �71.54083 1618 4341 18.5 Inceptisol 14.6
Tres Cruces 1* TC1 �13.10920 �71.60148 3093 2678 13.0 Inceptisol 11.6
Tres Cruces 2* TC2 �13.11188 �71.60691 3370 2448 13.0 Inceptisol 8.7
Tres Cruces 3* TC3 �13.12909 �71.61689 3650 2448 8.0 Inceptisol 10.9

Soil orders follow the US Department of Agriculture (USDA) soil taxonomy system. See Supporting Information Table S2 for taxon identifications for all
study sites. An asterisk (*) is placed next to site names considered to be ‘higher fertility’ in this study, as indicated in the literature and supported by our
average foliar nitrogen: phosphorus (N : P) ratios shown. Mean annual temperature (MAT; °C) is negatively related to elevation across the study sites
(MAT = 26.1� 0.0049 elevation; R =�0.96; P < 0.001; Hijmans et al., 2005). MAP, mean annual precipitation.
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similar locations (Gentry, 1988). Only fully sunlit top-of-canopy
leaves were included in this study because many foliar spectral
and chemical traits are highly sensitive to vertical light gradients
within forests (Poorter et al., 1995, 2009; Niinemets & Fleck,
2002). Combining sun and shade leaves confuses spectral and
chemical trait comparisons within species, among species, and
between communities. Leaf collections were conducted using
tree-climbing techniques with strict leaf selection standards.
Specimen vouchers were prepared and matched to type speci-
mens kept at the National Agrarian University La Molina Her-
barium in Peru, Missouri Botanical Garden and Kew Botanic
Gardens. Taxonomy followed the Angiosperm Phylogeny Group
3 (Stevens, 2001–present), which utilizes available genetic infor-
mation.

The foliar database incorporates 102 families, 393 genera and
1449 species (Table S2). Because of high species turnover
between forest communities, the taxonomic partitioning within
the sites ranged from six to 53 families, from seven to 142 genera
and from eight to 268 species. Analyses of intra-specific variation
were performed on a subset of 557 species containing two to 13
individuals. Detailed information for all taxa and sites is provided
on the Carnegie Spectranomics website http://spectranomics.ciw.
edu.

Leaf spectroscopy

Hemispherical reflectance and transmittance were measured on
the adaxial surface of six randomly selected leaves immediately
after acquiring each canopy branch in the field. The spectral mea-
surements were taken at or close to the mid-point between the
main vein and the leaf edge, and approximately halfway from the
petiole to the leaf tip. Care was taken to avoid large primary or
secondary veins, while allowing for smaller veins to be incorpo-
rated in the measurement. Each of the six reflectance spectra for
an individual were averaged; the same was done with each set of
six transmittance spectra.

The spectra were collected with a field spectrometer (FS-3 with
custom detectors and exit slit configuration to maximize signal-
to-noise performance; Analytical Spectra Devices, Inc., Boulder,
CO, USA), an integrating sphere designed for high-resolution
spectroscopic measurements, and an illumination collimator
(Asner & Martin, 2011). The spectrometer records in 2151
bands spanning the 350–2500-nm wavelength region. Measure-
ments were collected with 136-ms integration time per spectrum.
The spectra were calibrated for dark current and stray light,
referenced to a calibration block (Spectralon; Labsphere Inc.,
Durham, NH, USA) in the integrating sphere, resampled to 10-
nm bandwidth, and trimmed to the 400–2500-nm range. The
high-fidelity measurement capability of our system resulted in
calibrated spectra that did not require smoothing or other filters.

Chemical assays

Branches of mature leaves were sealed in polyethylene bags in the
field to maintain moisture, stored on ice in coolers, and trans-
ported to a local site for processing within 3 h, and usually

< 30 min. A subset of leaves was selected from the branches for
scanning and weighing. Leaf area was determined on a 600 dots-
per-inch flatbed top-illumination optical scanner, using enough
leaves to fill 1–2 scan areas each of 21 cm9 25 cm (up to c. 75
leaves per sample depending on leaf size). Petioles were removed
from each leaf before scanning, and mid-veins were removed
when they exceeded 1 mm in diameter. Leaves exceeding the sur-
face area of the scanner were cut into sections until 1–2 full scan
areas were completed. The scanned leaves were dried at 70°C for
72 h before dry mass (DM) was measured. LMA was calculated
as g DMm�2. From a subset of leaves, leaf discs (at least 30 per
leaf) were immediately taken from 12 randomly selected leaves
and transferred to �80°C cryogenic shipping containers. The
remaining leaves were detached from the branches and subsam-
ples were selected to represent the range of colors and conditions
found among all leaves collected. When epiphylls were encoun-
tered, they were removed, along with dust and debris, before dry-
ing in mobile ovens at 70°C for 72 h followed by vacuum sealing
for transport.

Chemical analysis protocols, along with instrument and stan-
dards information, are detailed in Asner et al. (2014) and in doc-
uments available on the Carnegie Spectranomics website (http://
spectranomics.ciw.edu), which are summarized here. Dried
foliage was ground in a 20-mesh Wiley mill. Concentrations of
P, Ca, K, Mg, boron (B), iron (Fe), manganese (Mn), and zinc
(Zn) were determined on 0.4 g of dry leaf tissue by inductively
coupled plasma spectroscopy (ICP-OES; Therma Jarrel-Ash,
Waltham, MA, USA) after microwave digestion (MARSXpress;
CEM, Matthews, NC, USA). Carbon fractions including lignin,
cellulose, hemi-cellulose and soluble C (composed of amino
acids, pectins, simple sugars, starch and waxes) were determined
in 0.5 g of dry ground leaf tissue using sequential digestion of
increasing acidity (Van Soest, 1994) in a fiber analyzer (Ankom
Technology, Macedon, NY, USA). A subset of the ground mate-
rial was further processed to a fine powder for the determination
of total C and N concentrations by combustion-reduction ele-
mental analysis (Costec Analytical Technologies Inc., Valencia,
CA, USA).

Photosynthetic pigment concentrations (chlorophyll a and b
and total carotenoids) were quantified using two frozen leaf discs
(0.77 cm2 area each). Following preparation, the absorbance of
the supernatant was measured using a UV-VIS spectrometer
(Lambda 25; Perkin Elmer, Beaconsfield, UK). Chlorophyll a
and b and carotenoid concentrations were calculated using multi-
wavelength analysis (Lichtenthaler & Buschmann, 2001) at 470,
645, 662, and 710 nm. We report total chlorophyll as the sum of
chlorophyll a and b. Additional frozen leaf discs were used for the
total phenolic and tannin determinations using the Folin–Ciocal-
teau method (Ainsworth & Gillespie, 2007).

Analyses

Our analysis follows Fig. 1, showing the spectranomics approach
introduced by Asner & Martin (2011). The approach incorpo-
rates the full spectral information embedded in each leaf reflec-
tance and/or transmittance measurement into chemical and
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functional trait diversity analysis. An important difference
between our approach and others such as band-by-band spectral
indices is that it depends on the relative absorption and scattering
features expressed across the entire spectrum (Kokaly et al.,
2009). When applied using high-fidelity spectrometers and labo-
ratory chemical assays, our approach yields accurate and consis-
tent results within and across vegetation types and ecosystems
(Asner et al., 2011).

An important first step in the spectranomics approach involves
the conversion of each leaf reflectance and transmittance spec-
trum to an estimate of multiple chemical concentrations and
LMA. This is achieved using partial least squares regression with
predicted residual sum of squares (PLSR-PRESS) analysis
(Fig. 1). This chemometric method has emerged as a viable
approach for chemical interpretation of spectroscopic data
(Smith et al., 2002; Townsend et al., 2003; Martin et al., 2008).
We used PLSR (Haaland & Thomas, 1988; Feilhauer et al.,
2010) to determine which leaf traits are quantitatively deter-
mined by spectroscopy. The PRESS step minimizes exposure to
statistical over-fitting (Chen et al., 2004), which has been a prob-
lem in past studies (Kokaly, 2001). The PRESS statistic was cal-
culated by iteratively generating models while reserving 10% of
the samples from the input data set until the root mean square
error (RMSE) for the PRESS statistic was minimized. Following
conversion of the leaf reflectance and transmittance spectra to
chemical traits and LMA, the results were averaged at species,
genus, family, and site levels. It is critically important to recog-
nize that we are working with chemical traits and LMA derived
from leaf spectra, which we term ‘spectranomic traits’.

We assessed spectranomic trait differences among the lowland
lower and higher fertility sites (Table S1). The need for this was
made apparent in preliminary observations of a potential dichot-
omy between the lowland spectra based on soil fertility. Next we
applied single-variable general linear models (GLMs) to examine
the relationship between elevation and spectranomic traits
(Fig. 1). We did not assess temperature or precipitation as factors
independent of elevation. Temperature is strongly correlated with
elevation, as shown earlier, and precipitation, though not corre-
lated with elevation, did not explain variation in canopy chemis-
try in a previous study (Asner et al., 2014).

With the goal of examining how variance in foliar spectranom-
ic traits can be explained by phylogenetic grouping, we developed
nested ANOVA models with random effects using the Residual
Maximum Likelihood package in R (lme4; Faraway, 2005; Bates
& Maechler, 2009). We included the phylogenetic levels of fam-
ily (f ), genus nested within family (g), and species nested within
genus within family (s), as well as an environmental component
incorporated as site (T). All effects were treated as random. In
each model, y is any spectranomic trait for each canopy sample.
This value was modeled as the sum of the mean value for the
entire data set l (or subset, when specified), the nested genetic
effects (family i, genus j within family i, and species ijk within
genus j), the site effect (T), and the residual error of the measure-
ment e:

y ¼ lþ fi þ gij þ sijk þ Tl þ eijkl Eqn 1

The total variance about the mean for a given trait was there-
fore quantitatively parsed into the variance explained by families
(r2

f), genera within families (r2
g), species within genera (r2

s), site
(r2

T), and specimens within species (r2
e):

r2
total ¼ r2

f þ r2
g þ r2

s þ r2
T þ r2

e Eqn 2

If in a given model, the residual (r2
e) accounted for a high per-

centage of the total variance, then we concluded that site charac-
teristics and taxonomy did not explain the data well.

One limitation of this analysis is that it describes the overall
variation explained by each input variable. Not all taxa have equal
variance; some may have tightly clumped chemical signatures
whereas others may vary widely. This analysis will not pick up
such trends, but instead it quantifies the overall pattern of phylo-
genetic grouping or lack thereof relative to site and residual
effects. Previous work successfully tested this approach for phylo-
genetic partitioning analyses of chemical traits (Fyllas et al.,
2009).

Finally we used linear discriminant analysis (LDA) on the sub-
set of data containing two or more individuals per species to
understand how combinations of spectranomic traits relate to
taxonomic identity. In LDA, the independent variables are the
predictors and the dependent variables are the groups, thereby
permitting the use of multiple chemical variables in combination
to explain taxonomic groupings. LDA is ideal for this analysis
because, in contrast to logistic regression where the classification
variable is random and predicted by the continuous variables,

Fig. 1 Schematic of the spectranomics approach. The analysis begins with
high-fidelity leaf spectral reflectance and transmittance measurements
spanning the 400–2500-nm wavelength range. Partial least squares
regression (PLSR) with predicted residual sum of squares (PRESS) analysis
is used to convert the leaf spectra from individual trees to multiple foliar
chemical traits and leaf mass per unit area (LMA). Spectroscopically
derived chemical traits and LMA are compiled by species at the site level
(Table 1), and general linear modeling (GLM) is used to assess
environmental drivers such as elevation and soil fertility. Nested random
effects–analysis of variance (NRE-ANOVA) and linear discriminant analysis
(LDA) are used to assess the phylogenetic structure of individual and
multiple chemical traits, respectively.
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LDA classifications are fixed and the groupings are explained by a
set of random variables. LDA was performed using a common
covariance matrix and Mahalanobis distance as the distance mea-
sure. LDA calculates the distance between each point and the
group multivariate mean, and then classifies the point to the clos-
est group. To understand the relative significance of chemical
variables in explaining taxonomic grouping, we performed LDA
in a stepwise fashion, recording the percentage of the data set cor-
rectly classified with the addition of each chemical variable into
the model. The ordering of chemical variables into the analysis
was determined automatically by comparing and maximizing the
classification power of each leaf property in combination with
other properties at each step in the analysis. The chemical vari-
able best explaining the grouping was entered first into the
model, the second most important was entered second, and so
forth, until all variables were entered or the significance level of
the model reached 95%.

Results

Variation in leaf spectral properties

Leaf reflectance and transmittance variation was enormous
among individual species collected throughout the region
(Fig. 2a,b). Variation peaked in the near-infrared (NIR; 720–
1400 nm) region, followed by strong variation in the shortwave-
infrared (SWIR; 1400–2500 nm), and was lowest in the visible
wavelength region (400–700 nm). After the spectra were averaged
to the site level, the highest absolute spectral sensitivity to our
regional-scale gradient of soils and elevation was observed in the
SWIR (Fig. 2a,b). The NIR followed the SWIR in terms of over-
all sensitivity to the environmental gradient. In comparison,
absolute sensitivity was low in the visible region. Variation within
sites, shown as the standard deviation of reflectance and

transmittance (Fig. 2c,d), was also highest in the NIR and SWIR,
and much lower in the visible region. The highest elevation sites
(TC1–TC3) harbored trees with the highest NIR and lowest
SWIR reflectance, as well as systematically lower NIR and
VSWIR transmittance (Fig. 2a,b). However, the variance in the
NIR and portions of the SWIR was also higher in these upper
elevation forests (Fig. 2c,d).

Inter-specific variation in leaf reflectance was wavelength
dependent (Figs 3a, S1 for 400–800 nm), with maximum values
of 23% expressed as coefficients of variation (CVs) in the SWIR
range among co-existing species occurring in the highest eleva-
tion forests (TC1–TC3). On average, inter-specific variation in
transmittance was 200–300% greater than that of reflectance
(Figs 3b, S1 for 400–800 nm). Again the greatest transmittance
variability among species was observed in the highest elevation
forests, and in the SWIR region, with additional variation in the
visible spectrum. Intra-specific variation in reflectance and trans-
mittance averaged 50% lower than inter-specific variation
(Figs 3c,d, S2). While there was no clear pattern in this ratio with
elevation, the highest elevation forests tended to harbor tree
species with the most distinctive leaf spectral properties, as indi-
cated by relatively low ratios of intra- to inter-specific variation
(Fig. S2).

Chemical determinants of leaf spectral properties

Our data revealed high levels of foliar chemical and LMA varia-
tion both within and between forested sites throughout the
region (Table S3). Leaf traits showing the widest relative distri-
butions among sites included LMA, P, Ca, K, Mg, lignin,
phenols, cellulose, soluble C, and all micronutrients (B, Fe, Mn,
and Zn). Within-site variation (expressed as standard deviations
in Table S3) was also high, yet it represented just 25–50% of
the variation found across sites.

(a) (b)

(c) (d)

Fig. 2 High-fidelity leaf (a) reflectance and
(b) transmittance spectra for trees measured
in each site spanning gradients of elevation
and soil fertility (Table 1). The colored lines
are the mean values for each site. Site codes
are listed with full names provided in Table 1.
The gray areas indicate the total range
among all species at all sites. Lower panels
show the standard deviation of leaf (c)
reflectance and (d) transmittance.
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The highly varying foliar chemical traits and LMA provided
input to the PLSR-PRESS models developed for each of the 2567
individual trees surveyed (Table 2). These analyses revealed
multiple quantitative links between leaf reflectance and transmit-
tance signatures and foliar traits. Performances of chemical pre-
dictions were similar for reflectance- or transmittance-based
models, and the PLSR weightings or latent vectors indicated that

most of the spectrum was required to predict the chemical traits
and LMA (Figs S3, S4). There were approximately three levels of
performance in the PLSR-PRESS models (Table 2). Traits
retrieved with high precision (high R2; > 0.65) and high accuracy
(low RMSE; 0–20%) included LMA, water, N, P, total chloro-
phyll, total and soluble C, cellulose, and Mg. Traits estimated
with high precision but lower accuracy (RMSE > 20%) were

(a) (b)

(c) (d)

Fig. 3 (a) Intra-specific and (b) inter-specific
variation in leaf reflectance spectra at the site
level. Site codes are listed with full names
provided in Table 1. (c, d) Similar for leaf
transmittance spectra. Insets show the inter-
and intra-specific variation of reflectance and
transmittance from 400 to 800 nm (also
included in more detail in Supporting
Information Fig. S1).

Table 2 Performance of leaf reflectance and transmittance spectral estimates of chemical traits and leaf mass per unit area (LMA) in trees of the Andes-to-
Amazon region using partial least squares regression (PLSR) analysis

Reflectance Transmittance

R2 RMSE %RMSE No. of PVs R2 RMSE %RMSE No. of PVs

LMA 0.87 0.11 2.5 75 0.89 0.10 2.3 91
Water 0.88 2.66 4.6 48 0.89 2.50 4.3 70
Nitrogen (N) 0.81 0.14 21.2 93 0.84 0.13 19.5 94
Phosphorus (P) 0.68 0.28 12.3 81 0.69 0.27 11.9 75
Chlorophylls 0.77 0.17 9.0 54 0.78 0.17 8.8 46
Carotenoids 0.72 0.17 44.9 43 0.73 0.17 43.6 39
Phenols 0.72 28.33 26.7 55 0.72 28.18 26.6 58
Tannins 0.59 16.86 35.5 57 0.58 17.19 36.2 38
Total carbon 0.74 1.69 3.4 80 0.77 1.59 3.2 79
Soluble carbon 0.66 6.59 15.1 81 0.68 6.36 14.6 86
Hemi-cellulose 0.63 2.97 25.4 77 0.63 3.00 25.3 69
Cellulose 0.81 2.35 12.4 93 0.85 2.11 11.1 88
Lignin 0.67 5.79 22.7 86 0.68 5.68 22.3 83
Calcium (Ca) 0.78 0.53 101.9 96 0.77 0.53 103.6 98
Potassium (K) 0.61 0.33 73.2 72 0.62 0.32 71.9 87
Magnesium (Mg) 0.70 0.32 20.9 60 0.71 0.32 20.7 74
Boron (B) 0.39 0.48 16.6 49 0.42 0.47 16.2 56
Iron (Fe) 0.58 0.33 8.7 34 0.61 0.31 8.3 78
Manganese (Mn) 0.34 1.09 24.8 47 0.39 1.05 23.9 89
Zinc (Zn) 0.26 0.48 19.5 46 0.30 0.47 18.9 81

The regression coefficient, root mean square error (RMSE), RMSE as a percentage of the leaf trait (%RMSE), and the number of predictor variables (PVs)
determined for each trait are given.
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carotenoids, phenols, and Ca. Those retrieved with lower yet still
reasonable precision and accuracy were tannins, hemi-cellulose,
K, B, Fe, Mn and Zn.

Elevation and soil controls on spectranomic traits

Following conversion of each reflectance and transmittance spec-
trum to chemical values, again referred to here as spectranomic
traits, we calculated site-level statistics and plotted them against
elevation. Fig. 4 shows the elevation dependence of spectranomic
traits based on leaf reflectance; Fig. S5 of the online material pro-
vides a similar set based on transmittance. Most traits were highly
separable by lower and higher fertility soil classes in the lowlands,
shown as open versus closed circles in Fig. 4. Independent of
whether the results are based on reflectance or transmittance,
LMA was higher and N, P, water and photosynthetic pigments
were lower on the lower fertility soils (Table S4). Among struc-
ture and defense traits, phenols, tannins, total C, cellulose, hemi-
cellulose and lignin were higher in the low-fertility sites, whereas
soluble C was lower (Figs 4, S4; Table S3). Lowland low-fertility
sites also harbored canopies with consistently lower concentra-
tions of Ca, K, Mg, Fe, B, and Zn.

With increasing elevation among higher fertility forests (closed
symbols in Fig. 4), we spectrally measured site-level increases in

LMA, water, soluble C, and Mn (Table S5). LMA, soluble C and
Mn were the most sensitive to elevation, increasing by 100%,
50%, and 1000%, respectively. Conversely, increasing elevation
was highly correlated with decreases in N, Ca, chlorophylls, car-
otenoids, cellulose, and lignin. Specifically, N and Ca decreased
by 50% and 75%, respectively. The variance in foliar N increased
noticeably in the highest elevation sites, whereas Ca variation
remained low in all forests from lowland to treeline. Spectrally
derived foliar structural traits such as cellulose and lignin also
declined by 15% to 50%, but notably we found no decline in
chemical defense traits such as phenols and tannins. Transmit-
tance-based traits followed similar soil and elevational patterns to
those of reflectance-based traits (Fig. S5, Table S6).

Phylogenetic partitioning of spectranomic traits

Beyond the average site-level changes in spectranomic traits mea-
sured throughout the region, we also found strong phylogenetic
partitioning of the trait variance within forest communities and
across the elevation gradient (Figs 5 and S6 for reflectance- and
transmittance-based results, respectively). Structure and defense
compounds including lignin, cellulose, hemi-cellulose, tannins
and phenols, as well as water, N, and total and soluble C, dis-
played the strongest taxonomic partitioning (> 60%). Among

Fig. 4 Effects of elevation and soil fertility on
site-averaged spectranomic traits derived
from leaf reflectance spectroscopy. See
Supporting Information Fig. S5 for the
version based on leaf transmittance
spectroscopy. Bars indicate � 1 SE of the
mean of spectranomic traits at the site level.
Open symbols, lower fertility sites; closed
circles, higher fertility sites (Table 1).
Regression lines are for the higher fertility
sites only. All traits are calculated on a dry
weight basis.
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these chemicals, the partitioning of variance was driven mostly at
family and species levels of organization. The strength of taxo-
nomic partitioning increased further when considering only the
higher fertility sites (Fig. 5). For example, phylogenetic partition-
ing of the spectroscopically derived P variation throughout the
region increased from c. 32% among all sites to 73% among
higher fertility sites alone. In general, rock-derived nutrients were
more strongly organized by ‘site’ than by phylogeny, particularly
for P and Ca, which are the two nutrients known to control C
uptake in humid tropical forests. We also found strong site-level
control of the regional Mn pattern. Despite the effects of ‘site’ on
several rock-derived nutrients, it remained a somewhat small con-
tributor – often < 15% – to the explained variance in most spec-
tranomic traits (Figs 5, S6), indicating that, within any given
community along the elevation gradient, phylogeny dominates
over local differences in soils, microclimate, and other factors.
Here ‘site’ also incorporates variation among replicates within
species, including variability caused by leaf, branch or canopy
selection during our field collections.

Using LDA to combine spectranomic traits into multi-trait
signatures, we found that up to 85.5% of all species could be
accurately classified based on our complete 20-trait spectranomic
signature for leaf reflectance (Fig. 6). We achieved higher classifi-
cation accuracies of 93.1% and 89.8% for species in higher and
lower fertility forests, respectively (Table 3). Consistently, the
foliar traits most important to determining taxonomic identity
included tannins, N, soluble C, total C and water. The least
important included Ca and photosynthetic pigments. Genus-
and family-level determinations generally tracked those of spe-
cies, but at lower levels of accuracy. Genera could be predicted
from spectranomic signatures with 67.6–79.2% accuracy; fami-
lies were limited to 47.0–64.2% accuracy. Finally, transmittance-
based results generally tracked those of reflectance (Table S6).

Discussion

Our results reveal enormous spectral and chemical variation
among canopy trees found throughout the western Amazon. We

also discovered quantitative links between spectral and chemical
traits, and developed a causal chain leading from foliar spectral
diversity to highly accurate classification of tree taxa found
throughout the region. In combination, our findings suggest that
the spectroscopy of canopy foliage is organized in a nested
pattern determined regionally by soil fertility and elevation, and
locally to regionally by phylogeny. This finding sheds new light
on the degree and causes of variation in how tree canopies inter-
act with sunlight, as well as the potential use of this information
for mapping functional and biological diversity in humid tropical
forests with spectroscopy.

Spectral variability among Amazonian trees

Among the 1449 canopy tree species we assessed, variation in
the leaf reflectance and transmittance properties of mature,
green canopy foliage was extremely high compared with other
biomes (Williams, 1991; Pe~nuelas et al., 1997; Roberts et al.,
1998; Asner et al., 2000; Castro-Esau et al., 2004). Critically,
the majority of the measured spectral diversity was driven by
inter-specific rather than intra-specific variability. While some
studies have focused on how intra-specific variation in leaf opti-
cal properties can dominate the spectral dynamics of temperate
ecosystems due to phenology (Demarez et al., 1999; Kodani
et al., 2002), along vertical canopy light gradients, and with leaf
age (Poorter et al., 1995; Roberts et al., 1998), our results sug-
gest that canopy foliage in western Amazonian forests follows a
somewhat different set of rules. The upper canopy is much drier
and less susceptible to epiphylls, herbivory, and other factors
that often enhance intra-specific variation in leaf spectral signa-
tures (Vourlitis et al., 2008). During foliar collections, we docu-
mented the condition of leaves on branches as they were
harvested from the treetops, finding an average of 9% with
damage or epiphyll growth substantial enough to affect reflec-
tance or transmittance (G. P. Asner, unpub. data). Such effects
were more common in the humid submontane sites between
1000 and 2000 m elevation (up to 23%), but not systematically
so, and they occurred in discrete landscape patches comprised of

Fig. 5 Partitioning of the variance for
spectranomic chemical traits derived from
leaf reflectance spectroscopy into
phylogenetic (family/genus/species), site,
and unexplained residual components for:
(left) all sites on all soil types; (center) sites on
higher fertility soils; (right) sites on lower
fertility soils. The ‘site’ component
incorporates variation in soils, geology, and
topography, as well as tree and foliage
selection in the field, among other factors.
Unexplained residuals are comprised of
measurement error and other non-site-
related sources of uncertainty. A similar result
for chemicals and leaf mass per unit area
(LMA) derived from leaf transmittance
spectroscopy is shown in Supporting
Information Fig. S6.
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a few crowns at the time. These patches did not display a rela-
tionship with site fertility. Our sampling focused on the outer
‘skin’ of the canopy, a strategy that surely accentuated spectral
differences between, rather than within, species and foliated
branches. Yet these are the portions of the canopy that harvest
the vast majority of the energy input to the ecosystem (Saldarri-
aga & Luxmoore, 1991; Doughty & Goulden, 2008), and

which also dominate remotely sensed optical measurements of
highly foliated canopies from aircraft or satellites (Asner, 2008).
As such, our results of 2–3 times greater between-species than
within-species spectral variation indicate that phylogeny is a key
determinant of spatial variation in the reflectance properties and
solar radiation use of Amazonian forests.

Chemical determinants of leaf spectra

The measured spectral variation was linked to multiple chemical
traits and LMA (Table 2). The traits that were best retrieved from
the spectra ranged from those that mediate light capture and
CO2 uptake, to longevity and defense, as well as a plethora of
foliar metabolic processes. The best spectroscopic determinations
were LMA, water, N, chlorophylls, carotenoids, total C, cellulose
and several base cations and micronutrients. Defense compounds
including lignin, phenols and tannins were also well estimated
from spectroscopy, albeit with increased noise that parallels the
uncertainty inherent in laboratory assays of these chemicals
(Ainsworth & Gillespie, 2007). We note that many of these foliar
traits have been estimated from spectroscopy in the past (see
recent reviews by Jacquemoud et al., 2009; Kokaly et al., 2009;
Ustin et al., 2009). Others, such as the micronutrients B, Fe, Mn,
and Zn, although less precisely quantified by spectroscopy, were
also retrieved with surprising accuracy. This finding supports the
hypothesis that leaf reflectance and transmittance signatures are
an expression of both the direct elemental and molecular compo-
sition of specific chemicals such as water, pigments, N, and C

Table 3 The cumulative effect of combining leaf spectranomic traits based on reflectance in the prediction of tree canopy species using linear discriminant
analysis (LDA) (Fig. 6)

LDA step

Species Genera Families

All sites High-fertility Low-fertility All sites High-fertility Low-fertility All sites High-fertility Low-fertility

1 C Tannins Tannins Water Water Water C C Water
2 Water Sol-C Lignin C N C Water Sol-C C
3 Tannins Water N Sol-C C Tannins Sol-C N Tannins
4 N LMA Water Tannins Sol-C Sol-C N Tannins Sol-C
5 Sol-C C C N Tannins N Tannins Mn P
6 P Mn Cellulose Mg Ca Mg Mn Water Mg
7 Cellulose N LMA Hemi Hemi Phenols Mg B Hemi
8 LMA Cellulose P Mn Fe Hemi B Mg B
9 Mn K Phenols Fe K LMA Hemi Hemi Lignin

10 Hemi Hemi Zn B B Lignin Zn Fe LMA
11 K Mg Mg Zn Mn Zn P Zn Zn
12 Mg Fe Hemi LMA Mg B LMA K N
13 Zn Zn K Cellulose Zn Fe Cellulose Ca Phenols
14 B B B Phenols Cellulose K Phenols Car Ca
15 Phenols P Car P Car P Ca Chl Chl
16 Fe Phenols Chl K Chl Car K Cellulose Car
17 Car Ca Mn Car P Chl B P K
18 Chl Car Ca Chl Phenols Mn Chl Phenols Mn
19 Ca Chl Fe Ca LMA Ca Car LMA Fe
20 Lignin Lignin Sol-C Lignin Lignin Cellulose Lignin Lignin Cellulose
%ID 85.5 93.1 89.8 62.6 79.2 68.3 47.0 64.2 55.1

Results are shown for species, genus and family levels, and by all sites, higher fertility sites, and lower fertility sites. A comparable set of results based on
foliar transmittance is provided in Supporting Information Table S6. Car, carotenoids; Chl, chlorophylls; Hemi, hemi-cellulose; LMA, leaf mass per unit area;
Sol-C, soluble carbon.

Fig. 6 Increase in the accuracy of spectranomic classification of tree
families (blue), genera (red) and species (green) using stepwise linear
discriminant analysis (LDA) based on foliar reflectance of species
containing two or more individuals. Spectranomic composition steps
(1–20) map to specific chemical elements, molecular compounds and leaf
mass per unit area (LMA) listed in Table 3. A comparable set based on
foliar transmittance is provided in Supporting Information Table S5.
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(Curran, 1989), and the indirect expression of the constellation
of other chemicals that support whole-leaf stoichiometry and
functional processes (Porder et al., 2005; Martin et al., 2007).
Critically, all 19 chemical traits and LMA were predicted from
spectroscopy at the P < 0.05 significance level (Table 2), allowing
us to test combinations of spectranomic traits for use in taxo-
nomic classification.

Environmental controls on spectranomic traits

The leaf spectranomic traits, derived by converting spectra to
chemicals, were well organized by soil fertility in the Amazo-
nian lowlands and by elevation to the Andean treeline. Here we
emphasize that all findings are based on chemical and LMA
estimates derived from spectroscopy; that is, we calibrated the
spectra to laboratory-assayed chemicals and LMA, and then pre-
dicted the chemical portfolios of all 2567 individual trees from
the spectroscopy, followed by statistical analyses of species, gen-
era, and families at site and regional levels. We found that
lower fertility forests contain tree canopies with elevated con-
centrations of defense compounds including phenols, tannins,
and lignin, as well as higher LMA (Fig. 4). These trees have
lower concentrations of every macro- and micro-nutrient
known to underpin growth and multiple metabolic processes.
Additional review of the lower fertility sites in the lowlands
indicates that trees found on the dystrophic white sand soils in
northern Peru maintain the absolute highest levels of defense
and lowest nutrient investment of all forests in the study,
including the highest altitude sites (Tables 1, S3). Such
uniquely evolved chemical, and thus spectral, traits may help
explain the functional divergence of tree canopies on these
unique white sand ecosystems.

Elevation was another strong driver of change in community-
averaged spectranomic traits (Fig. 4). Recent elevation studies in
the western Amazon suggest that increasing altitude is associated
with decreasing gross and net primary production (Girardin
et al., 2010; Moser et al., 2011; Huasco et al., 2013). Our results
support this finding by revealing declines in foliar N and photo-
synthetic pigment concentrations, and increasing LMA, with ele-
vation among the higher fertility sites, which in combination
suggest declines in photosynthesis in higher altitude forests in the
Andes-to-Amazon region (see Wright et al., 2004). The eleva-
tional decline in Ca concentrations revealed in our data may also
be linked to suppressed growth.

In contrast to growth-related traits, defense compounds such
as phenols and tannins showed no trend with elevation. How-
ever, we did observe a strong shift in C allocation, with soluble C
increasing substantially at higher altitudes while cellulose concen-
trations declined. Lignin also showed a modest decline at higher
altitudes. Increasing soluble C with elevation gain is probably
related to increased allocation to waxes that protect high-eleva-
tion foliage (Asner et al., 2014). However, decreasing cellulose
relative to soluble C also suggests a possible bottleneck in the pro-
cessing of sugars and starches to cell walls. Such a bottleneck
might be caused by Ca deficiency at higher elevation (Grubb
et al., 1963; Demarty et al., 1984).

Phylogenic pattern in spectranomic traits

Despite the clear regional effects of soils and elevation on average
spectranomic trait values, we also found strong evidence for phy-
logenetic organization of many of the traits derived from spec-
troscopy (Fig. 5). This applied primarily to leaf structure and
defense compounds such as lignin, cellulose, phenols and tan-
nins; the phylogenetic partitioning of variance among these
chemicals was strongly determined at family and species levels.
These findings may reflect selective pressure among co-existing
tree species to diverge in C and defense allocation, thereby main-
taining contrasting strategies in the presence of host-specific her-
bivores (Marquis, 1984; Fine et al., 2006).

Foliar N and water displayed surprisingly strong phylogenetic
organization, whereas rock-derived nutrients including P, base
cations and micronutrients all showed greater sensitivity to site
and unknown residuals than to phylogeny (Fig. 5). The pattern
for spectroscopically derived N may be driven, in part, by the
hyper-abundance of taxa in the N-fixing family Fabaceae (Table
S2), with its highly variable N concentrations and low intra-spe-
cific variation among genera and species (Bustamante et al.,
2006; Nardoto et al., 2008; Asner et al., 2014). By contrast, high
phenotypic plasticity in P and other rock-derived nutrients prob-
ably reflects a need to negotiate resource scarcity and patchiness
in highly weathered soils (Correa & Reichardt, 1989; Quesada
et al., 2009). This hypothesis is strongly supported by an
observed doubling of the phylogenetic attribution of variance in
foliar P and Ca, and to a lesser extent Mg and Fe, when we con-
strained the analysis to high-fertility sites alone (Fig. 5). However,
a lack of response in phylogenetic organization of K, B, and Zn
on higher versus lower fertility sites suggests that these micronu-
trients do not limit productivity or some other metabolic func-
tion to the degree in which it would be expressed as an evolved
spectranomic trait.

The possibility of spectranomic signatures – combinations of
chemical traits – creating linkages between phylogeny and spec-
troscopy remains a new scientific area of inquiry. In high-diver-
sity, humid tropical forests, an evolutionary history of intense
biotic interactions (e.g. competition, mutualism, and pest
defense) and generally good growth conditions (e.g. high net
primary production) should theoretically create highly organized
canopy spectranomic signatures. Our LDA modeling results
strongly support this hypothesis: multi-chemical signatures
derived from foliar spectroscopy are highly unique among co-
existing tree species found on each soil type and throughout the
region as a whole (Fig. 6, Tables 3, S6). In turn, this suggests the
existence of a wide range of strategies played out on the forest
landscape to negotiate varying niche conditions and biotic inter-
actions over time.

Spectral assembly of the Amazonian canopy

The functional and biological diversity of the Amazonian forest
canopy is sometimes portrayed as relatively homogeneous, or
somewhat smoothly varying, throughout the lowlands (Condit
et al., 2002; ter Steege et al., 2006, 2013). However, our results
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indicate that tree canopy spectral and chemical composition var-
ies strongly within and across communities in the western Ama-
zonian lowlands. In fact, spectrally derived chemical variation
across lowland communities meets or exceeds that which is
achieved across > 3000 m of elevation change (e.g. Fig. 4). With
foliar spectroscopy closely tracking multiple chemicals through-
out these forests, we contend that the fundamental interaction of
the canopy with incoming light also changes by soil type in the
lowlands. Although traditional optical metrics such as total
absorbed photosynthetically active radiation (APAR) are satu-
rated and fail to produce a pattern across our lowland sites (data
not shown; derived from Fig. 2, 400–700 nm range), other parts
of the optical spectrum, particularly the NIR and SWIR (700–
2500 nm), are highly sensitive to changing lowland sites (Fig. 2).
This finding suggests not only multiple chemical responses to
lowland soil fertility but also that lowland forest albedo, which is
largely determined by NIR and SWIR spectroscopy (Ollinger,
2011), is linked to soil fertility. This finding also provides a
mechanistic link between canopy brightness patterns observed in
broadband NIR and SWIR reflectance of Landsat imagery, and
changes in soil fertility and floristic composition reported for
northwestern Amazonian forests (Tuomisto et al., 1995; Higgins
et al., 2011).

Transitioning from the lowlands to the Andean treeline, field
plot data suggest a pattern of decreasing productivity and soil N
availability with increasing elevation (Fisher et al., 2013; Girardin
et al., 2013; Huasco et al., 2013). A recent study also showed
that foliar N : P decreases with elevation (Metcalfe et al., 2013),
yet this pattern is dominated by a few white sand and highly
weathered clay sites in the lowlands that locally suppress foliar P
concentrations (Asner et al., 2014). Removing these dystrophic
sites from the analysis reveals that P does not change with eleva-
tion alone (Fig. 4), and thus foliar spectral properties are not
changing in response to changing P with elevation. Instead, our
results indicate that average foliar spectral properties along the
elevation gradient are driven strongly by changes in LMA, N,
photosynthetic pigments, soluble C, and cellulose, among others
(Table S3). In other words, light capture and growth traits are
clearly responsible for changes in foliar spectra with elevation.
These findings agree with and explain recent results from a top-
down analysis of 25-ha forest landscapes along an Andes-to-
Amazon elevation gradient as sensed in airborne whole-canopy
reflectance measurements (Asner et al., 2013).

Despite the differential effects of soil fertility in the lowlands
and elevation to the Andean highlands, our results reveal the exis-
tence of a kaleidoscope of spectral variation within each forest
community. From the lowlands into the montane region, high
spectral diversity is predominantly driven by between-species
rather than by within-species variation in leaf reflectance and
transmittance in the upper canopy. Although we do not yet know
the relative importance of drivers of the chemical diversification
underpinning this spectral diversity among co-existing trees, they
are likely to be the same drivers often invoked to explain the exis-
tence of high biological diversity, such as phylogenetic niche con-
servatism (Wright, 2002; Brown, 2014). Our results strongly
suggest that high spectral diversity is both part and parcel of high

functional and biological diversity, perhaps by way of chemical
defense trait evolution in response to host-specific pest and path-
ogen pressure (Janzen, 1970; Coley & Barone, 1996; Fine et al.,
2006; Coley & Kursar, 2014). In turn, local-scale phylogenetic
control of leaf spectroscopy probably mediates each taxon’s con-
tribution to ecosystem processes ranging from C cycling to
hydrologic functioning and nutrient dynamics. The spectroscopy
of canopy foliage thus expresses spatial variation in the biogeo-
chemical processes that underlie the Amazonian forest function.

Finally, our results demonstrate that high-fidelity optical spec-
troscopy might serve as a quantitative surrogate for laborious wet
chemical assays, thereby saving much time and expense. Measur-
ing full-range (400–2500 nm) spectral reflectance and transmit-
tance with very low noise and high signal performance means
that we can derive chemical estimates with laboratory precision
and accuracy in the field. In turn, this could advance our ability
to modify field data collections ‘on the fly’, thereby improving
efficiencies that may support more rapid discoveries. Our find-
ings also strongly support the need for a spaceborne high-fidelity
imaging spectroscopy mission to probe the spectral, chemical and
biological composition of our biosphere. Without a high-fidelity
imaging spectrometer in Earth orbit, opportunities to understand
functional and biological diversity change are currently unreal-
ized, ironically in an era of the most rapid changes thought to be
underway since the last ice age (Schimel et al., 2013).
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