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Abstract
Remote identification and mapping of canopy tree species can contribute valuable informa-

tion towards our understanding of ecosystem biodiversity and function over large spatial

scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical

forests have prevented automated remote species mapping of non-flowering tree crowns in

these ecosystems. We set out to identify individuals of three focal canopy tree species

amongst a diverse background of tree and liana species on Barro Colorado Island, Pan-

ama, using airborne imaging spectroscopy data. First, we compared two leading single-

class classification methods—binary support vector machine (SVM) and biased SVM—for

their performance in identifying pixels of a single focal species. From this comparison we

determined that biased SVM was more precise and created a multi-species classification

model by combining the three biased SVMmodels. This model was applied to the imagery

to identify pixels belonging to the three focal species and the prediction results were then

processed to create a map of focal species crown objects. Crown-level cross-validation of

the training data indicated that the multi-species classification model had pixel-level produc-

er’s accuracies of 94–97% for the three focal species, and field validation of the predicted

crown objects indicated that these had user’s accuracies of 94–100%. Our results demon-

strate the ability of high spatial and spectral resolution remote sensing to accurately detect

non-flowering crowns of focal species within a diverse tropical forest. We attribute the suc-

cess of our model to recent classification and mapping techniques adapted to species

detection in diverse closed-canopy forests, which can pave the way for remote species

mapping in a wider variety of ecosystems.

Introduction
A comprehensive understanding of tropical forest biodiversity and function over large spatial
scales is hindered by a lack of spatially extensive information on tree species composition, as
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field measurements are often spatially localized and have difficulty resolving large geographic
patterns [1]. Remote sensing can extend field-based knowledge over large areas by providing
continuous spatial coverage of surface reflectance and structural properties [2,3]. In particular,
imaging spectroscopy (or hyperspectral remote sensing) measures light reflected in hundreds
of narrow, contiguous spectral bands, which may allow the discrimination of different plant
species. However, the use of imaging spectroscopy for remote species mapping presents a
major practical challenge in tropical forests where the species richness of trees� 10 cm dbh
may exceed 300 species per ha [4]. As automated tree species mapping has not yet been accom-
plished in a high diversity tropical forest, we currently have little understanding of the ability of
imaging spectroscopy to map species in these ecosystems.

To assess the potential for remote species mapping in tropical forests, a number of studies
have examined the spectral separability and classification performance of different tropical
plant species and growth forms. Spectral differences have been found among leaf- and branch-
level spectra of different species from the same ecosystem, as well as the spectra of different
species detected from hyperspectral airborne and satellite sensors [5–11]. Important spectral
differences have also been found between tree and liana species [12,13], as well as between
groups of native and invasive species [14]. These results indicate the potential for classification
models to differentiate species or groups of species based on their remotely-sensed spectral
signatures.

In a foundational study, Clark et al. [7] attempted to classify seven canopy tree species from
a diverse Costa Rican rainforest based on their remotely-sensed hyperspectral signatures col-
lected with the airborne sensor HYDICE. Their most successful model classified the crowns of
their study species with 92% accuracy. Despite these encouraging results, this classification
model could not be used to map any of the seven study species across the study site. The pri-
mary reason for this was that the classification model differentiated the seven study species
from one another, but not from the hundreds of other tree and liana species present at the site.
In addition, the preferred model was based on crown-mean spectra, and thus operational spe-
cies mapping would require automatic delineation of tree crowns throughout the image prior
to applying the classification model to predict species identity. At the time of the study, the
ability to accurately, automatically delineate individual tree crowns in a closed-canopy tropical
forest did not exist, and nearly a decade later it still does not.

Since Clark et al. [7], others have performed successful classifications of tropical forest spe-
cies based on their remotely-sensed spectral signatures, but these models were also non-opera-
tional in that they were unable to distinguish the study species from the other species present at
the study site, e.g., [15]. Meanwhile, operational species mapping has been accomplished in
several ecosystems with relatively low species diversity [16–20]. The inability of operational
species mapping to move beyond lower diversity ecosystems may lie in the classification
approach used. In the aforementioned classification and mapping studies, species classification
models were based upon the traditional multi-class classification approach, which requires rep-
resentative training data to be collected for all model classes (species) present in the scene. This
requirement is not likely to be fulfilled in tropical forests that harbor hundreds to thousands of
species. Even if representative training data were available for all canopy species in a high-
diversity forest, the outlook for such a classification model would be quite dim as classification
accuracy is known to decline as the number of classes increases [18,21]. In the face of these
mounting challenges, it is not surprising that the remote sensing community has expressed
ambivalence towards the prospect of remote species mapping in high diversity tropical forests
[22].

Clearly, a different approach is needed to accomplish operational remote species mapping
in high-diversity forests. A possible solution may come from single-class classification methods
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that distinguish samples of a single focal class from those of all other classes, e.g., [23–25].
These methods are advantageous when the interest is in mapping a single class because they
aim to maximize classification accuracy with respect to the focal class rather than the average
classification accuracy over all model classes. They also reduce the overall amount of training
data required compared to traditional multi-class classification, and some require training data
from only the class of interest [23,24], making acquisition of an appropriate training dataset
more feasible for tropical forests. Moreover, single-species classification models can be directly
applied for species mapping in the area of study because they explicitly aim to distinguish the
focal species from all other species. Thus far, single-class classification methods have been
explored for species classification and mapping with promising results in a few ecosystems
with relatively low species diversity [25–27]. If these methods are found to be effective in high-
diversity ecosystems, single-species classification may solve many of the problems associated
with remote species mapping in tropical forests.

Taking a single-species detection approach, we set out to map three important canopy tree
species within the diverse, closed-canopy tropical forest of Barro Colorado Island, Panama,
using high spatial resolution imaging spectrometer data. We evaluated two leading single-class
classification methods (discussed in detail in Methods section) for their ability to distinguish
the remotely-sensed spectra of the focal species from a diverse background of other tree and
liana species based solely on their non-flowering crown spectral characteristics. We combined
the selected single-species models into a multi-species model for mapping the three focal spe-
cies across the island and evaluated the predictions by confirming the species identities in the
field. Our species maps were highly reliable, demonstrating that tropical tree species can be
effectively mapped with airborne imaging spectroscopy data. Together, the techniques pre-
sented here represent a high-performance, operational method for the identification of individ-
ual tree crown objects of one or more focal species that is adapted to the challenges
encountered in tropical forests and greatly reduces the burden of training data collection.

Methods

Study site
Barro Colorado Island (BCI) is a 1560-ha island located in Gatun Lake, which was formed in
the early 20th century as part of the construction of the Panama Canal (Fig 1). The BCI forest is
tropical moist, with a mean annual temperature of 26°C and mean annual rainfall of 2600 mm.
There is a distinct dry season from January to April, and an estimated 6.3% of trees> 30 cm
dbh are deciduous during the dry season [28]. There are approximately 500 tree species in the
BCI forest [29,30], with nearly 60 tree species ha-1 among trees� 20 cm dbh [31], a size typi-
cally considered to occupy the canopy. In addition to the high species diversity of trees present
in the canopy, there are many lianas present in this forest. Less is known about the diversity of
lianas at the top of the canopy, but a census of liana stems on BCI found an average of 75 liana
species ha-1 for stems� 1 cm in diameter [32]. Surveys of liana infestation of trees have esti-
mated that ~78% of trees� 20 cm dbh have at least one liana in their crown, though not neces-
sarily overtopping the crown [33].

Spectral data
Imaging spectrometer data were collected over Barro Colorado Island, Panama, with the Car-
negie Airborne Observatory Airborne Taxonomic Mapping System (CAO AToMS; [34]) in
February of 2012. The CAO was flown at an altitude of 1 km providing data at 1.12 m spatial
resolution, and was flown between 10 am and 1:30 pm under nearly cloud-free conditions to
minimize shadow effects. The CAO AToMS system consists of three instrument subunits: i) a
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High-fidelity Imaging Spectrometer (HiFIS), ii) a Light Detection and Ranging (LiDAR) scan-
ner, and iii) a Global Positioning System-Inertial Measurement Unit (GPS-IMU). The CAO
HiFIS subsystem provided spectroscopic images spanning the visible to shortwave infrared
portion of the spectrum between 380 and 2512 nm, which was resampled to 10.4 nm spectral
resolution. The LiDAR subsystem was operated in discrete return mode with a density of four
laser shots per square meter with up to four returns per shot, providing three-dimensional
information on terrain and canopy structure [34]. The GPS-IMU subsystem provided position-
ing and attitude data to project the HiFIS and LiDAR data onto the land surface. Canopy height
information provided by the LiDAR subsystem was used for accurate orthorectification of the
spectral data. Radiance data were converted to surface reflectance using ACORN 5BatchLi
(Imspec LLC, Palmdale, CA) with a MODTRAN look-up table and reflectance was BRDF
adjusted to correct for cross-track reflectance gradients [35]. Prior to analysis, we removed
spectral bands that were heavily influenced by water absorption (1330–1460 nm and 1770–
2022 nm) and noisy bands at the upper and lower portions of the spectrum (below 400 nm and
above 2422 nm). This resulted in a total of 167 spectral bands used for analysis.

A field campaign was conducted to locate and identify individual tree crowns within the
CAO image in January of 2013. Crown locations were recorded in the field with a handheld
Global Positioning System (GS50 Leica Geosystems Inc., Norcross, GA, USA). These crowns
were then manually delineated in the CAO imagery, taking care to ensure that the pixels
extracted were as pure as possible, without contamination from lianas or neighboring trees.
The crowns were collected along trails traversing the full east-west span of the island, sampling
across all flight lines. The campaign was conducted to sample the tree diversity of the island as
widely as possible, without sampling large numbers of any one species. This resulted in 340
crowns representing 84 tree species. Although not used in this study, leaves were collected
from identified crowns with a permit from the Smithsonian Tropical Research Institution to
Robin Martin.

To obtain a larger sample of crowns for a few key species, we used satellite imagery collected
over the island from the Ikonos, QuickBird, and WorldView-2 sensors. Three common canopy
tree species–Dipteryx panamensis, Handroanthus guayacan (formerly assigned to the genus
Tabebuia), and Jacaranda copaia–flower at different times of the year. D. panamensis flowers
in June-August,H. guayacan flowers after heavy rainfall events in the second half of the dry
season, and J. copaia flowers in March-April before the onset of the wet season. In these events,

Fig 1. Map of Barro Colorado Island (BCI), Panama.

doi:10.1371/journal.pone.0118403.g001
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many mature canopy individuals will display colorful flowers that allow them to be identified
in multispectral satellite images or aerial photographs. Individuals of these species were identi-
fied in a series of satellite images acquired between 2002 and 2011 during flowering events
[36]. Locations of crowns identified from the satellite images were superimposed on the CAO
image and 40 crowns of each species were manually delineated in the CAO image. Crowns
transferred to the CAO image were distributed evenly across the island while avoiding proxim-
ity to trails (< 20 m). Crowns ofH. guayacan and J. copaia were checked in the field at the time
of the CAO flight and both species were found to have foliage but not flowers. Thus our efforts
to identify these species using imaging spectroscopy are based solely on the optical reflectance
properties of non-flowering tree crowns.

The field-collected crowns and those obtained from the satellite data were combined into a
single dataset to compare methods for single species identification and to map the focal species
across BCI. Each of the three focal species was well represented by over 40 training crowns,
while the field-collected crowns provided a broad sampling of the tree species across the island.
Prior to analysis, all of the spectral data were filtered to include only well-lit, leafy vegetation
pixels with NDVI� 0.7 and mean NIR (850–1050 nm) reflectance� 21% (referred to here as
“vegetation pixels”). A summary of the spectral data is presented in Table 1 and the mean and
95% confidence interval of the spectra for the three focal species is shown in Fig 2, superim-
posed on the 95% confidence interval for the spectra of all vegetation pixels on the island.

Single-species classification methods
We investigated two support vector machine (SVM) techniques that have shown promise in
distinguishing samples of a single focal species from those of all other species–binary SVM and
biased SVM [26]. The basic SVM is a non-parametric classification method that is widely used
in remote sensing because of its good classification performance and elegant handling of high-
dimensional data [37–39]. It has also been shown to be among the top-performing classifica-
tion methods in remote species identification [17,18,40]. SVM is a binary classifier that sepa-
rates samples of two classes in feature space with a decision boundary [41,42]. This boundary is
generated by maximizing the margins between the boundary and the closest training samples
(the support vectors), while minimizing misclassification errors. A fitted cost parameter, C,
controls the penalty associated with misclassification error and thus the complexity of the deci-
sion boundary; a higher misclassification penalty will result in a more complex model, but with
more danger of overfitting. A kernel function may be used to perform an implicit mapping of
the data into a higher dimensional feature space [43,44], allowing non-linear separation of the
classes in the original feature space. The popular radial basis function (RBF) kernel has a single
fitted parameter, γ, controlling the kernel width. Thus, constructing an SVM with an RBF ker-
nel requires fitting of two parameters, γ and C. Optimal values of these parameters are found
through cross-validation on the training dataset.

Table 1. Summary of the spectral data from both the field-collection campaign and the crowns
obtained from satellite data.

Species # Crowns # Pixels

D. panamensis 50 10726

H. guayacan 44 3325

J. copaia 44 2091

Other 322 9350

Total 460 25492

doi:10.1371/journal.pone.0118403.t001
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For this analysis we used a specific type of binary SVM in which samples from a single class
of interest, or the focal class, are contrasted against samples from all other classes, which
together make up the non-focal, or outlier, class. This is also referred to as “one-against-all”
binary SVM. The F-score on the focal class (F = 2pr/(p+r), where r = sensitivity or recall accu-
racy and p = precision) is an appropriate choice of optimization criterion in single-class classifi-
cation with highly imbalanced class sizes. Sensitivity is the proportion of focal class samples
that are correctly assigned by the classifier to the focal class (i.e., the producer’s accuracy for
the focal class) and precision is the proportion of samples assigned to the focal class that truly
belong to the focal class (i.e., the user’s accuracy for the focal class). Maximization of the F-
score selects a combination of parameter values that yields both high sensitivity and high preci-
sion, while keeping these two aspects of model performance relatively well balanced.

Biased SVM [24] works similarly to the standard binary SVM in that it finds an optimal sep-
aration between two classes in feature space. However, the collected training data from the
focal class are contrasted against samples that are randomly selected from the data pool (in this
case, the vegetation pixels from the entire island), referred to here as “pseudo-outliers”. Because

Fig 2. Mean and 95% confidence interval of the reflectance spectra for each focal species. (a) Dipteryx
panamensis, (b)Handroanthus guayacan, and (c) Jacaranda copaia. The colored lines represent the mean
reflectance, and the colored areas represent the 95% confidence interval for each spectral band. The gray
area represents the 95% confidence interval for the well-lit leafy vegetation on BCI.

doi:10.1371/journal.pone.0118403.g002

Operational Tree Species Mapping in a Diverse Tropical Forest

PLOS ONE | DOI:10.1371/journal.pone.0118403 July 8, 2015 6 / 21



the pseudo-outlier data are of unknown identity and will contain samples from the focal class,
errors occurring within the pseudo-outlier class are given a lower penalty than errors occurring
within the focal class. An extra parameter, wc, is added to the model, which controls the relative
cost of errors occurring in the two classes.

The parameterization of biased SVM is also performed through cross-validation on the
training dataset. However, without known samples from the outlier class, precision cannot be
calculated. A tuning criterion that works well for biased SVM is r2/P[ƒ(x) = 1], where r is the
sensitivity (recall accuracy) and P[ƒ(x) = 1] is the probability that a sample is assigned to the
focal class [26,45]. This criterion is based on the concept that model sensitivity should be maxi-
mized while simultaneously minimizing the number of samples that are assigned to the focal
class, and is thought to work similarly to the F-score in that it will be large when both recall
and precision are large [45]. In a study examining the optimization of biased SVM for remote
tree species mapping, Baldeck and Asner [26] found that this criterion worked well for opti-
mizing biased SVMs and generally outperformed an alternative optimization criterion. They
also found that cross-validation generally worked best when performed at the crown level (i.e.,
by splitting crowns rather than pixels into the cross-validation groups).

One-against-all binary SVM and biased SVM have thus far been applied to species detection
in only a few instances [26,27]. Binary SVM was initially used in a study exploring different
methods for species detection in a Hawaiian forest [27]. Biased SVM is a relatively new single-
class classification method that first showed promise in studies of web document and land-
cover classification [24,46], and represented an attractive possibility for species detection
because it could be trained with a fraction of the training data used in binary SVM. Only one
study has investigated the potential of biased SVM for use in single-species detection [26]. That
study compared biased SVM to binary SVM using crown spectral data from a savanna ecosys-
tem and found that biased SVM performed well, though it did not achieve as high overall per-
formance as binary SVM.

Comparison of binary versus biased SVM
To create the binary SVMmodels, the training data were divided into the focal species class
and the non-focal, or outlier, species class. The training dataset for each focal species consisted
of all the focal species crowns plus all outlier species crowns from the field collection campaign.
Only crowns from the field collection campaign were used to form the outlier class to prevent
skewing this class heavily toward the other focal species. It has been shown that the balance in
the amount of data from the focal and outlier classes can affect model performance in this type
of one-against-all binary classification [26]; therefore, we conducted a preliminary analysis to
assess model balance for these datasets, which is described in the Supporting Information. We
found that the ratio of focal to outlier species crowns present in these datasets (approximately
0.15) yielded good results (S1 Fig), and so the full datasets were used in the tests of the binary
SVMmodels.

For each focal species binary SVMmodel, the optimal values of γ and C were found by an
exhaustive grid search over the values γ 2 {e-12, e-11, . . ., e-6} and C 2 {e5, e6, . . ., e15} using five-
fold crown-level cross-validation [21]. In this procedure, the crowns of each class were split
into five roughly equally sized groups. One group from each class was set aside to form the test
dataset and a model was built from the remaining data using the trial parameter values. This
was repeated five times such that the data from each group was predicted with a model built
from a separate set of crowns. The F-score on the focal class was calculated based on the
number of pixels that were correctly classified and this was repeated for every parameter
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combination. The combination of γ and C resulting in the highest cross-validation F-score was
chosen for the final model for each species.

To create the biased SVMmodels, the focal species crowns were used to form the focal class
and 40,000 vegetation pixels were randomly sampled from the CAO imagery to form the
pseudo-outlier class. The biased SVMmodels were optimized using the same crown-level
cross-validation procedure described for binary SVM, except that the pseudo-outlier data were
split into five groups randomly by pixel. The optimal values of γ, C, and wc were found through
a grid search over the values γ 2 {e-8, e-7, . . ., e-2}, C 2 {e5, e6, . . ., e11}, and wc 2 {0.1, 0.2, . . .,
0.7}. To save computation time, a coarse search was conducted over these ranges using every
other value of each parameter, then a fine-scale search was conducted bracketing the optimal
values identified from the coarse search. The biased SVMs were optimized using the r2/P[ƒ(x)
= 1] criterion estimated using all focal species and pseudo-outlier pixels [45].

Once the optimal parameters were identified, we compared the performance of the binary
and biased SVMmodels. For binary SVM, one-fifth of both the focal and outlier crowns were
removed to form the test dataset and a model was built using the remaining data using the opti-
mal parameter values. For biased SVM, one-fifth of the focal species crowns were removed and
placed in the test dataset and a model was built using the remaining focal species crowns and
32,000 pseudo-outlier pixels. Focal and outlier crowns were randomly assigned to the training
and test groups and the same group assignments were used for both the binary and biased
models of the same species. This procedure was repeated 100 times. We were especially inter-
ested in comparing the sensitivity and specificity (the proportion of outlier class samples that
are correctly assigned to the outlier class) of the two classifiers. Therefore, although the outlier
crowns were not used to train the biased SVMs, the test outlier crowns were passed to the
biased SVMmodels to estimate specificity. We also compared the performance of binary and
biased SVM by using each to map the focal species across the island. For each focal species and
classifier type, a classification model was built from the full dataset and this was applied to all
vegetation pixels in the CAO imagery.

Focal species mapping
Based on our comparison of binary and biased SVMmethods for mapping the focal species
(see Resultssection below), we chose to use the biased SVMmethod as the basis for creating
the final maps of the three focal species. A final biased SVMmodel was created for each focal
species using all of the data available for that species plus all of the pseudo-outlier data. Then
the three final biased SVMs were combined into a multi-species classification to be used for
mapping the three species simultaneously.

As the three biased SVMmodels are independent of one another, it is possible for a pixel to
be assigned to the focal species of more than one model. To break such ties we trained an ordi-
nary multi-class SVM with an RBF kernel to differentiate the three focal classes from one
another. All crowns from the three focal species were used, but the data from D. panamensis
andH. guayacan were randomly subset to 2091 pixels (the number available for J. copaia) to
create evenly balanced species classes. The biased SVMs for the three focal species and the tie-
breaking SVM were combined into the final, multi-species classification model with the follow-
ing rules: (i) If a pixel was assigned to the outlier class by all of the biased SVMmodels, then
that pixel was assigned to the outlier class. (ii) If a pixel was assigned to the focal species class
by only one biased SVMmodel, then it was assigned to the corresponding focal species. (iii) If
a pixel was assigned to the focal species class by more than one biased SVMmodel, the pixel
was passed to the tie-breaking SVM to determine the species assignment. For the final multi-
species classification model, we obtained estimates of the pixel-level producer’s accuracies for
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the three focal species (equivalent to the sensitivity, but for multi-class models) using five-fold
crown-level cross-validation. We then applied this model to all vegetation pixels in the CAO
imagery to map the three focal species.

The raster of the model prediction results contained some amount of undesirable noise
(spatially random pixels assigned to the focal classes). To reduce this noise, we applied contex-
tual filters to the model prediction results. First, we resized the raster grid by cutting each pixel
into quarters and performed opening-closing on the raster of predicted occurrences for each
species (3 × 3 pixel kernel; ENVI software, Exelis, Boulder, CO USA). The opening procedure
removed small objects of two pixels in width and then the closing procedure filled small holes
of two pixels in width (here, two pixels in width is equivalent to one pixel in width at the origi-
nal resolution). The raster grid was then resized to the original resolution and each contiguous
area belonging to the same focal class was designated as an individual object (contiguity was
defined as pixels that were side-adjacent). Objects with fewer than ten pixels were eliminated
and objects that remained were counted as crown objects. We refer to these areas as “crown
objects” rather than “crowns” to acknowledge that a single crown object may contain the
crowns of two or more individual conspecific trees, and that the crown of one individual tree
may be represented by two or more smaller crown objects, separated perhaps by liana or
shadow.

Field validation
To obtain estimates of model precision for predicted crown objects, we returned to the island
to verify their species identity. The prediction map was brought to the field on a tablet PC and
predicted crown objects located near trails (< 20 m away) were checked to verify their species
identity. Only trail segments that were not visited in the first field campaign were used for
model verification. No permits were needed to check the identities of the tree crowns on the
island.

Additional field observations were recorded to help with the interpretation of the prediction
map. We noted the presence of individuals of the focal species with crowns reaching the top of
the canopy (at least 5 m in diameter) that were encountered in the field but not indicated by
the prediction map, which might be considered as a failure of the model to detect the presence
of that species. For all focal species trees encountered, the presence and severity of liana infesta-
tion of the tree crown was recorded, with special attention to whether the lianas were covering
the top of the canopy. However, the field search for omitted focal species crowns was not sys-
tematic and there was ambiguity in which ones should be considered to be a genuine omission
error (for example, the presence of lianas may indicate that the omission is correct from a
remote sensing perspective). Therefore, we could not quantify the proportion of focal species
canopy individuals that were not detected (i.e., we could not measure crown-object-level sensi-
tivity). These observations were meant only to explore sources of error; we relied on the previ-
ously described accuracy analyses to estimate model sensitivity.

Results

Comparison of binary versus biased SVM
In general, binary SVM had higher sensitivity but lower specificity than biased SVM for the
same focal species (Fig 3). The average model sensitivity for binary SVM was 0.036–0.057
higher across species than that of biased SVM. The difference was smaller for specificity, which
was 0.004–0.012 higher across species for biased SVM compared to binary SVM. The maps
produced from these models were consistent with this general result as more pixels were
assigned to the focal class by the binary SVMmodels (Fig 4). However, the contrast in the
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amount of pixels assigned to the focal classes was quite strong, as 11.9%, 3.9%, and 4.3% of the
vegetation pixels were classified as D. panamensis,H. guayacan, and J. copaia, respectively,
using the binary SVMmodels versus only 4.1%, 0.7%, and 1.0%, respectively, using the biased
SVMmodels. Accordingly, the binary SVMmaps were noticeably noisier than those produced
from biased SVM (Fig 4). We found the higher precision provided by the biased SVMmodels

Fig 3. Performance of binary and biased SVM for the three focal species.Results are given for both
model sensitivity (a, c, e) and specificity (b, d, f) measured on the spectra from a separate set of crowns.
Sensitivity is the proportion of focal class samples that are correctly assigned to the focal class and specificity
is the proportion of outlier class samples that are correctly assigned to the outlier class. Note the difference in
the y-axis between sensitivity and specificity.

doi:10.1371/journal.pone.0118403.g003
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Fig 4. Mapped prediction results of binary and biased SVMmodels for the three focal species. The true-color representation of the raw imagery is on
the left-hand side, results from the binary SVMmodels are in the center, and results from the biased SVMmodels are on the right-hand side. The three
spectral bands used to display the true-color image are R = 640 nm, G = 550 nm, and B = 460 nm.

doi:10.1371/journal.pone.0118403.g004
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to be desirable for our mapping application; therefore, we chose biased SVM as the basis for
the final species classification model.

Focal species mapping
The tie-breaking three-species classification model showed good classification performance,
with an overall accuracy of 97.9% based on five-fold crown-level cross-validation. However,
the tie-breaking model was rarely needed to break prediction ties. When the biased SVMmod-
els were applied to the imagery, 5.6% of the vegetation pixels were assigned to at least one of
the focal species classes and of these, only 2.1% were assigned to more than one focal species
class. Thus, the tie-breaking model was used to predict the identity of only 0.1% of the vegeta-
tion pixels. We estimated that the final classification model, which included the three individ-
ual biased SVMmodels plus the tie-breaking model, had pixel-level producer’s accuracies
(sensitivity for the focal class × 100) of 97.4%, 94.3%, and 93.9% for D. panamensis,H. guaya-
can, and J. copaia, respectively, based on five-fold crown-level cross-validation. A portion of
the mapped results of the final multi-species classification is shown in Fig 5B.

The contextual filters reduced the number of pixels assigned to the focal species classes by
12.8%, 26.4%, and 23.1% for D. panamensis,H. guayacan, and J. copaia, respectively. The num-
ber of objects (contiguous areas) assigned to the three species was reduced much more drasti-
cally by 90.4%, 88.1%, and 85.1%, respectively (Fig 5C). This occurred because the filters
removed a large quantity of small objects, often only one pixel in size. After filtering, there
were a total of 2,107 predicted crown objects of D. panamensis, 837 of H. guayacan, and 1,405
of J. copaia across the entire island (Fig 6).

Field validation
Field validation indicated that our map of predicted crown objects was very precise. We visited
39 crown objects assigned to D. panamensis, 38 of H. guayacan, and 32 of J. copaia. Of these,
only one crown object assigned to D. panamensis and two assigned toH. guayacan were found
to be incorrect. This resulted in an estimated false-positive error rate of 2.6% for D. panamen-
sis, 5.3% for H. guayacan, and 0% for J. copaia.

Fig 5. Mapped results of the multi-species model before and after applying the contextual filters. The panels are (a) true-color representation of the
raw imagery, (b) prediction results for the multi-species classification model, and (c) prediction results after undergoing crown smoothing and size filtering.
The three spectral bands used to display the true-color image in (a) are R = 640 nm, G = 550 nm, and B = 460 nm. The colors used to represent the species in
(b) and (c) are blue = D. panamensis, red = H. guayacan, and yellow = J. copaia.

doi:10.1371/journal.pone.0118403.g005
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Fig 6. Prediction results for the three focal species across BCI. Blue = D. panamensis, red = H. guayacan, and yellow = J. copaia. Insets show close-up
of results for high-density areas of each focal species.

doi:10.1371/journal.pone.0118403.g006
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We observed some individuals of each species in the field that were not detected by our
model. Six D. panamensis crowns were encountered that were not predicted by our maps. Of
these, one was found to have been cut by the NDVI filter (through inspection of the CAO
imagery), one had interference by lianas, and two were small (~ 5 m in diameter). We encoun-
tered nine crowns ofH. guayacan which were not predicted, of which one had low NDVI, one
had interference by lianas, and one was small. We also encountered eight J. copaia crowns in
the field that were not predicted, seven of which were small. Most of the small non-detected J.
copaia crowns had been swept out of the prediction map by the image processing steps
designed to remove noise and small objects. Both the false-positive rates and the relative lack of
plausible reasons for crown omission errors indicate that H. guayacan was the most trouble-
some of the three focal species to detect.

Discussion

Model performance
Our final classification model was found to perform very well, which was especially remarkable
considering that it was produced using 138 training crowns from only the species that were
mapped. The crown object map that we produced from the classification results was highly
reliable in the sense that it had a very low false-positive error rate for predicted crown objects.
The classification model had high pixel-level producer’s accuracies for the three focal species,
though some of the model’s sensitivity in detecting the focal species was certainly lost after the
contextual filters were applied to the model results to create the map of crown objects. This was
evidenced by the fact that omission errors were observed for crowns of each species while we
were validating the maps in the field.

When observing focal species crowns in the field, it could be quite unclear as to what consti-
tuted an omission error. With examples from each of the focal species, we observed crowns in
the field that were not predicted or only partially predicted by our model that were highly con-
taminated or partially or fully covered by lianas. Additionally, it was not uncommon that a
crown object appearing to represent a single crown both in the CAO imagery and in the predic-
tion map was found to be two or more adjacent individuals of the same species. Both of these
occurrences are important from an ecological perspective because they contribute to an under-
estimation of the number of individuals of a species, though we do not consider them to be
errors from a remote species detection perspective. Some of the omitted crowns, such as many
of those of J. copaia, were simply small, and may have been captured by our model if we had
used a less conservative size filter (though this may have introduced false-positives). There
were other instances from each species where crowns were missed by the prediction model for
no apparent reason of interference by other species, insufficient size, or lower NDVI, which
occurred most often for H. guayacan.

The three species examined here have previously been mapped across the island either by
their flowering characteristics or through visual interpretation of aerial photographs. Flowering
crowns of H. guayacan were mapped across BCI using two Quickbird images from different
years with an automatic approach combining spectral angle mapping and one-class SVM [47].
Using visual interpretation of aerial photographs, D. panamensis crowns were identified based
on canopy structure [48], andH. guayacan and J. copaia crowns were identified through their
flowering traits [49,50]. Additionally, J. R. Kellner produced island-wide maps of all three focal
species (the same used to obtain focal species training data used in this study) based on crown
flowering using multispectral satellite imagery with an automatic detection method [36]. The
island-wide distributions of the three focal species produced by our species detection model
resemble those found in these previous studies [36,47,48,50]. However, our model detected
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many more crown objects than the number of crowns reported in these studies (Table 2). This
suggests that our model, which uses imaging spectroscopy and is not limited to detecting flow-
ering individuals, was more powerful. However, caution is warranted with these comparisons
as our results pertain to crown objects and not individuals per se (though the same logic likely
applies to other studies as well).

The forest of Barro Colorado Island posed several challenges to remote species mapping;
namely, high species diversity of the canopy, high prevalence of lianas, and a continuous can-
opy layer in which individual tree crowns are difficult to distinguish. We attribute the success
of remote species mapping in this forest to two main factors: i) a shift from multi-species to sin-
gle-species classification, and ii) performing species classification at the pixel-level, with crown
objects identified after classification.

Single-species detection
A single-species classification approach has considerable advantages over the traditional
multi-species classification framework when the interest is in mapping one or a few focal
species. Single-species classification can increase model performance with respect to the focal
species and decrease the overall amount of data required to train the species that are not of
interest (or in the case of biased SVM, it eliminates this requirement altogether) [25,26].
However, a focus on single-species detection need not restrict mapping to only one species; sin-
gle-class classification models can be combined in different ways to make a multi-class classifi-
cation [51]. For example, Muñoz-Marí et al. [52] combined several support vector domain
description classifiers (very similar to one-class SVM) into a multi-class model to map land
cover classes. One-against-all binary SVM and biased SVM were found to outperform one-
class SVM for remote species identification [26], and for this analysis, we combined biased
SVMs to create a multi-species identification model. Thus, improving single-species classifica-
tion models can be one important route towards building more effective multi-species classifi-
cation models.

Both binary and biased SVMmodels yielded reasonable performance with this dataset.
Tested on a separate crown dataset, we found that binary SVM provided greater sensitivity but
slightly lower specificity than biased SVM. However, comparing the performance of these
methods in this way may give an incomplete view of their relative performances. When the
models were applied to the imagery, binary SVM assigned approximately three to six times
more pixels to the focal species compared to biased SVM. We may expect that small differences
in model specificity have a large impact when the model is applied to the image as the non-
focal species make up the majority of the landscape. However, it is also possible that noisy
results from the binary SVMmodel could be an artifact of less-than-complete representation
of the non-focal vegetation by our training dataset of over 300 crowns. This phenomenon was
suggested by the results of a previous study comparing binary and biased SVM for remote spe-
cies identification of five focal species in a savanna ecosystem [26]. In that study, binary SVM
generally performed better than biased SVM, except that binary SVM produced noticeably

Table 2. The number of crown objects detected in the present study compared to previous studies.

D. panamensis H. guayacan J. copaia Study

2107 837 1405 Present study

706 Sanchez-Azofeifa et al. [46]

688 977 Garzon-Lopez et al. [49]

904 804 432 J. R. Kellner [50]

doi:10.1371/journal.pone.0118403.t002
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noisier maps than biased SVM for one of the focal species. This was hypothesized to be caused
by less representative training of the non-focal class for the higher-diversity riparian areas in
which that particular focal species was found. In the current study we found that biased SVM
consistently produced more precise maps than binary SVM, which supports the hypothesis
that biased SVM has an advantage in high diversity landscapes.

Thus, although our preliminary experiments using cross-validation of the training dataset
indicated that the binary SVMmodels had very high specificity, maps produced by these mod-
els were not as precise as we wished. The precision of binary SVM would likely improve if
more training data were gathered for the non-focal species, but pursuing this track may be
impractical in such an ecosystem. With high tree species diversity it becomes very costly to
comprehensively sample the non-focal tree species, and in the BCI forest there is also a high
diversity of other vegetation types, mostly lianas, that contributes to the non-focal class in the
canopy. Biased SVM offers a solution to this problem by comprehensively sampling the spectra
of all vegetation present and using this information to constrain the focal species class.
Whereas the details of optimizing and implementing biased SVM for single-species detection
were previously unclear, recent work exploring possible alternatives has made this method
more straightforward to use for remote species mapping [26]. It now appears that biased SVM,
through its ability to constrain the focal class independently of the quality of the outlier train-
ing data available, is not only a viable alternative but likely a preferred alternative to binary
SVM when performing remote species mapping in very high diversity ecosystems.

Delineation of tree crowns
The automatic delineation of individual tree crowns, or crown segmentation, has long been an
obstacle for operational species mapping. Segmentation of individual crowns has generally
been viewed as the first step before applying species classification to an image [7,53–56]. This is
not without reason, as some studies have found that accuracy of species classification models
was higher when classification was performed on crowns instead of pixels; for example, by
using the mean spectra from crowns for classification or majority vote of the pixel class assign-
ments [7,35]. Additionally, a map of crown identities may be more ecologically meaningful
than a map of pixel identities.

Crown segmentation may rely on structural differences among crowns detected by LiDAR
or indicated by shadow, spatial separation of crowns, or spectral differences among crowns.
Segmentation of individual tree crowns has been successfully accomplished in many places
where structural differences among crowns facilitate crown separation, such as coniferous for-
est, savannas, or urban areas, e.g., [20,35,53,56–58], and this is especially facilitated by the use
of LiDAR. In closed-canopy, non-conifer forests where there are fewer structural clues, spectral
differences have been emphasized as a way to differentiate crowns, e.g., [18,59]. Segmentation
of individual tree crowns based on spectral data alone is extremely difficult, and to date there
has been very limited success delineating individual tree crowns in tropical forests (though
progress is being made; see [59,60]). This may partially explain why some crown-level species
identification models have not made it to the mapping step despite promising classification
results, e.g., [7,15].

The closed-canopy and high prevalence of lianas in the BCI forest meant that individual
crowns were difficult to observe in the image. However, during the model validation field cam-
paign we found many instances where the pixel-level species predictions correctly determined
the shape and size of individual tree crowns (more specifically, the shape and size of the crown
area uncovered by lianas), even where a priori visual interpretation had failed. Therefore, we
found that it was preferable to train a pixel-level species classifier and use the prediction results
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to dictate the spatial coverage of the focal species crowns. This approach had the advantage
that errors due to incorrect delineation of tree crowns were not fed into a species identification
model. It also suited our objectives because we were only interested in delineating crowns of
the focal species, rather than delineating all crowns on the island. Although we could not elimi-
nate cases where a single crown object identified by our procedure was actually two or more
adjacent conspecific individuals (as observed in the field), this limitation is unlikely to be over-
come using existing methods with spectral data alone. Our mapped crown results show that
automatic crown segmentation can be accomplished for selected species in a closed-canopy,
high diversity tropical forest when paired with species identification as a first step, and that this
strategy may be a preferable alternative to attempting to perform individual tree crown seg-
mentation based on raw spectral data followed by object-based classification of crowns.

Remote species mapping in the tropics
In their review of high resolution remote sensing in tropical forests, Nagendra and Rocchini
[22] argued that high spatial resolution remote sensing data are best suited to accurately locat-
ing features within an image and less well suited for species identification. They concluded that
high-spatial resolution data may make it more difficult to characterize the spectral signatures
of different species to perform species classification, citing the problem of variability among
pixels within the same crown when pixels are smaller than the crown being identified. How-
ever, we found that the high spatial and spectral resolution data are suitable for both accurate
feature location and species identification, and that within-crown spectral variability does not
preclude species classification of pixels. A possible explanation for this disparity could be the
recent shift from endmember-based classification methods such as spectral angle mapper,
which use one or a few exemplar spectra for each class, towards classification methods such as
linear discriminant analysis, random forest, and SVM, which can accommodate greater
within-class variability. The latter two methods are even able to accommodate complex, non-
normal, multi-modal within-class variation.

Here we showed that remote species identification can be successfully achieved in a diverse,
closed-canopy tropical forest using high spatial resolution imaging spectroscopy data. We pro-
duced an accurate crown object map of three focal species that was found to be very precise.
The recently developed biased SVM performed well as the basis for our final multi-species clas-
sification model, and its performance was judged superior to the current standard method of
binary SVM for our dataset. Thus our final multi-species classification model had the consider-
able advantage of only requiring representative training data from the species of interest, which
can greatly ease the burden associated with producing species classification models, especially
in high diversity ecosystems. Our method of producing crown objects from the pixel-level clas-
sification results also has implications for automatic tree crown delineation, indicating that
individual crowns in can be delineated in high diversity, closed-canopy tropical forests when
coupled with species identification. Further experimentation is needed to determine whether
these methods will prove useful for remote species mapping in other ecosystems, especially
those with high species diversity and a continuous closed canopy.

Supporting Information
S1 Fig. Overall performance (F-score) of binary SVMmodels for the three focal species as
the number of training crowns was varied for both the focal species and the outlier species
classes. nf indicates the number of crowns of the focal species class and no indicates the number
of crowns for the outlier species class.
(EPS)

Operational Tree Species Mapping in a Diverse Tropical Forest

PLOS ONE | DOI:10.1371/journal.pone.0118403 July 8, 2015 17 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0118403.s001


S1 Methods. Methods and results for the analysis of the training data amount and balance
for binary SVM.
(DOC)

Acknowledgments
We thank Raul Tupayachi, Felipe Sinca, Nestor Jaramillo, Katie Kryston, Byron Tsang, and
Kelly McManus for their outstanding support during field collection of tree crowns. We also
thank Rufino Gonzalez for his botanical expertise during the field crown collection and model
validation. The Carnegie Airborne Observatory has been supported by the Avatar Alliance
Foundation, Gordon and Betty Moore Foundation, John D. and Catherine T. MacArthur
Foundation, Grantham Foundation for the Protection of the Environment, W. M. Keck Foun-
dation, Margaret A. Cargill Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr.,
and William R. Hearst III. We also thank Stephanie Bohlman and one anonymous reviewer for
helpful comments on the manuscript.

Author Contributions
Conceived and designed the experiments: CAB GPA. Performed the experiments: CAB. Ana-
lyzed the data: CAB. Contributed reagents/materials/analysis tools: CAB GPA REM CBA DEK
JRK SJW. Wrote the paper: CAB GPA REM CBA JRK SJW.

References
1. Schimel DS, Asner GP, Moorcroft P (2013) Observing changing ecological diversity in the Anthropo-

cene. Front Ecol Environ 11: 129–137. doi: 10.1890/120111

2. Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M. (2003) Remote sensing for bio-
diversity science and conservation. Trends Ecol Evol 18: 306–314. doi: 10.1016/S0169-5347(03)
00070-3

3. Gillespie TW, Foody GM, Rocchini D, Giorgi AP, Saatchi S (2008) Measuring and modelling biodiver-
sity from space. Prog Phys Geogr 32: 203–221. doi: 10.1177/0309133308093606

4. Valencia R, Balslev H, C GPYM (1994) High tree alpha-diversity in Amazonian Ecuador. Biodivers Con-
serv 3: 21–28. doi: 10.1007/BF00115330

5. Fung T, Ma FY, Siu WL (1998) Hyperspectral data analysis for subtropical tree species recognition.
Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS ‘98. 1998 IEEE Interna-
tional. Vol. 3. pp. 1298–1300 vol.3. doi: 10.1109/IGARSS.1998.691383

6. Cochrane MA (2000) Using vegetation reflectance variability for species level classification of hyper-
spectral data. Int J Remote Sens 21: 2075–2087. doi: 10.1080/01431160050021303

7. Clark ML, Roberts DA, Clark DB (2005) Hyperspectral discrimination of tropical rain forest tree species
at leaf to crown scales. Remote Sens Environ 96: 375–398. doi: 10.1016/j.rse.2005.03.009

8. Castro-Esau KL, Sánchez-Azofeifa GA, Rivard B, Wright SJ, Quesada M (2006) Variability in leaf opti-
cal properties of Mesoamerican trees and the potential for species classification. Am J Bot 93: 517–
530. doi: 10.3732/ajb.93.4.517 PMID: 21646212

9. Zhang J, Rivard B, Sánchez-Azofeifa A, Castro-Esau K (2006) Intra- and inter-class spectral variability
of tropical tree species at La Selva, Costa Rica: implications for species identification using HYDICE
imagery. Remote Sens Environ 105: 129–141. doi: 10.1016/j.rse.2006.06.010

10. Asner GP, Martin RE (2011) Canopy phylogenetic, chemical and spectral assembly in a lowland Ama-
zonian forest. New Phytol 189: 999–1012. doi: 10.1111/j.1469-8137.2010.03549.x PMID: 21118261

11. Asner GP, Martin RE, Carranza-Jiménez L, Sinca F, Tupayachi R, Anderson CB, et al. (2014) Func-
tional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region.
New Phytol 204: 127–139. doi: 10.1111/nph.12895 PMID: 24942328

12. Castro-Esau KL, Sánchez-Azofeifa GA, Caelli T (2004) Discrimination of lianas and trees with leaf-level
hyperspectral data. Remote Sens Environ 90: 353–372. doi: 10.1016/j.rse.2004.01.013

13. Kalacska M, Bohlman S, Sanchez-Azofeifa GA, Castro-Esau K, Caelli T (2007) Hyperspectral discrimi-
nation of tropical dry forest lianas and trees: comparative data reduction approaches at the leaf and
canopy levels. Remote Sens Environ 109: 406–415. doi: 10.1016/j.rse.2007.01.012

Operational Tree Species Mapping in a Diverse Tropical Forest

PLOS ONE | DOI:10.1371/journal.pone.0118403 July 8, 2015 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0118403.s002
http://dx.doi.org/10.1890/120111
http://dx.doi.org/10.1016/S0169-5347(03)00070-3
http://dx.doi.org/10.1016/S0169-5347(03)00070-3
http://dx.doi.org/10.1177/0309133308093606
http://dx.doi.org/10.1007/BF00115330
http://dx.doi.org/10.1109/IGARSS.1998.691383
http://dx.doi.org/10.1080/01431160050021303
http://dx.doi.org/10.1016/j.rse.2005.03.009
http://dx.doi.org/10.3732/ajb.93.4.517
http://www.ncbi.nlm.nih.gov/pubmed/21646212
http://dx.doi.org/10.1016/j.rse.2006.06.010
http://dx.doi.org/10.1111/j.1469-8137.2010.03549.x
http://www.ncbi.nlm.nih.gov/pubmed/21118261
http://dx.doi.org/10.1111/nph.12895
http://www.ncbi.nlm.nih.gov/pubmed/24942328
http://dx.doi.org/10.1016/j.rse.2004.01.013
http://dx.doi.org/10.1016/j.rse.2007.01.012


14. Somers B, Asner GP (2012) Hyperspectral time series analysis of native and invasive species in
Hawaiian rainforests. Remote Sens 4: 2510–2529. doi: 10.3390/rs4092510

15. PapeşM, Tupayachi R, Martínez P, Peterson AT, Asner GP, et al. (2013) Seasonal variation in spectral
signatures of five genera of rainforest trees. IEEE J Sel Top Appl Earth Obs Remote Sens 6: 339–350.
doi: 10.1109/JSTARS.2012.2228468

16. Lucas R, Bunting P, Paterson M, Chisholm L (2008) Classification of Australian forest communities
using aerial photography, CASI and HyMap data. Remote Sens Environ 112: 2088–2103. doi: 10.
1016/j.rse.2007.10.011

17. Dalponte M, Bruzzone L, Gianelle D (2012) Tree species classification in the Southern Alps based on
the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data.
Remote Sens Environ 123: 258–270. doi: 10.1016/j.rse.2012.03.013

18. Féret J, Asner GP (2013) Tree species discrimination in tropical forests using airborne imaging spec-
troscopy. IEEE Trans Geosci Remote Sens 51: 73–84. doi: 10.1109/TGRS.2012.2199323

19. Baldeck CA, Colgan MS, Féret J- B, Levick SR, Martin RE, et al. (2014) Landscape-scale variation in
plant community composition of an African savanna from airborne species mapping. Ecol Appl 24: 84–
93. doi: 10.1890/13-0307.1 PMID: 24640536

20. Alonzo M, Bookhagen B, Roberts DA (2014) Urban tree species mapping using hyperspectral and lidar
data fusion. Remote Sens Environ 148: 70–83. doi: 10.1016/j.rse.2014.03.018

21. Baldeck CA, Asner GP (2014) Improving remote species identification through efficient training data
collection. Remote Sens 6: 2682–2698. doi: 10.3390/rs6042682

22. Nagendra H, Rocchini D (2008) High resolution satellite imagery for tropical biodiversity studies: the
devil is in the detail. Biodivers Conserv 17: 3431–3442. doi: 10.1007/s10531-008-9479-0

23. Tax DMJ, Duin RPW (1999) Support vector domain description. Pattern Recognit Lett 20: 1191–1199.
doi: 10.1016/S0167-8655(99)00087-2

24. Liu B, Dai Y, Li X, LeeWS, Yu PS (2003) Building text classifiers using positive and unlabeled exam-
ples. Third IEEE International Conference on Data Mining, 2003. ICDM 2003. pp. 179–186.
doi:10.1109/ICDM.2003.1250918.

25. Foody GM, Atkinson PM, Gething PW, Ravenhill NA, Kelly CK (2005) Identification of specific tree spe-
cies in ancient semi-natural woodland from digital aerial sensor imagery. Ecol Appl 15: 1233–1244.
doi: 10.1890/04-1061

26. Baldeck CA, Asner GP (in press) Single species detection with airborne imaging spectroscopy data: a
comparison of support vector techniques. IEEE J Sel Top Appl Earth Obs Remote Sens. doi: 10.1109/
JSTARS.2014.2346475

27. Féret J-B, Asner GP (2012) Semi-supervised methods to identify individual crowns of lowland tropical
canopy species using imaging spectroscopy and LiDAR. Remote Sens 4: 2457–2476.

28. Condit R, Watts K, Bohlman SA, Pérez R, Foster RB, Hubbell SP. (2000) Quantifying the deciduous-
ness of tropical forest canopies under varying climates. J Veg Sci 11: 649–658. doi: 10.2307/3236572

29. Croat TB (1978) Flora of Barro Colorado Island. Stanford, CA: Stanford University Press.

30. Garwood NC (2009) Seedlings of Barro Colorado Island and the Neotropics. Ithaca, NY: Comstock
Publishing Associates.

31. Thorington RW Jr, Tannenbaum B, Tarak A, Rudran R (1982) Distribution of trees on Barro Colorado
Island: a five hectare sample. In: Leigh EG Jr, Rand AS, Windsor DM, editors. The ecology of a tropical
forest: seasonal rythms and long-term changes. Smithsonian Institution Press.

32. Schnitzer SA, Mangan SA, Dalling JW, Baldeck CA, Hubbell SP, Ledo A, et al. (2012) Liana abun-
dance, diversity, and distribution on Barro Colorado Island, Panama. PLoS ONE 7: e52114. doi: 10.
1371/journal.pone.0052114 PMID: 23284889

33. Ingwell LL, JosephWright S, Becklund KK, Hubbell SP, Schnitzer SA (2010) The impact of lianas on 10
years of tree growth and mortality on Barro Colorado Island, Panama. J Ecol 98: 879–887. doi: 10.
1111/j.1365-2745.2010.01676.x

34. Asner GP, Knapp DE, Boardman J, Green RO, Kennedy-Bowdoin T, et al. (2012) Carnegie Airborne
Observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote
Sens Environ 124: 454–465. doi: 10.1016/j.rse.2012.06.012

35. Colgan M, Baldeck C, Féret J-B, Asner G (2012) Mapping savanna tree species at ecosystem scales
using support vector machine classification and BRDF correction on airborne hyperspectral and LiDAR
data. Remote Sens 4: 3462–3480. doi: 10.3390/rs4113462

36. Kellner JR (2008) Population and community dynamics of tropical rain forest canopy trees Athens, GA:
The University of Georgia.

Operational Tree Species Mapping in a Diverse Tropical Forest

PLOS ONE | DOI:10.1371/journal.pone.0118403 July 8, 2015 19 / 21

http://dx.doi.org/10.3390/rs4092510
http://dx.doi.org/10.1109/JSTARS.2012.2228468
http://dx.doi.org/10.1016/j.rse.2007.10.011
http://dx.doi.org/10.1016/j.rse.2007.10.011
http://dx.doi.org/10.1016/j.rse.2012.03.013
http://dx.doi.org/10.1109/TGRS.2012.2199323
http://dx.doi.org/10.1890/13-0307.1
http://www.ncbi.nlm.nih.gov/pubmed/24640536
http://dx.doi.org/10.1016/j.rse.2014.03.018
http://dx.doi.org/10.3390/rs6042682
http://dx.doi.org/10.1007/s10531-008-9479-0
http://dx.doi.org/10.1016/S0167-8655(99)00087-2
http://dx.doi.org/10.1890/04-1061
http://dx.doi.org/10.1109/JSTARS.2014.2346475
http://dx.doi.org/10.1109/JSTARS.2014.2346475
http://dx.doi.org/10.2307/3236572
http://dx.doi.org/10.1371/journal.pone.0052114
http://dx.doi.org/10.1371/journal.pone.0052114
http://www.ncbi.nlm.nih.gov/pubmed/23284889
http://dx.doi.org/10.1111/j.1365-2745.2010.01676.x
http://dx.doi.org/10.1111/j.1365-2745.2010.01676.x
http://dx.doi.org/10.1016/j.rse.2012.06.012
http://dx.doi.org/10.3390/rs4113462


37. Camps-Valls G, Gómez-Chova L, Calpe-Maravilla J, Martín-Guerrero JD, Soria-Olivas E, et al. (2004)
Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE
Trans Geosci Remote Sens 42: 1530–1542. doi: 10.1109/TGRS.2004.827262

38. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vec-
tor machines. IEEE Trans Geosci Remote Sens 42: 1778–1790. doi: 10.1109/TGRS.2004.831865

39. Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J
PhotogrammRemote Sens 66: 247–259. doi: 10.1016/j.isprsjprs.2010.11.001

40. Dalponte M, Orka HO, Gobakken T, Gianelle D, Naesset E (2013) Tree species classification in boreal
forests with hyperspectral data. IEEE Trans Geosci Remote Sens 51: 2632–2645. doi: 10.1109/TGRS.
2012.2216272

41. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20: 273–297. doi: 10.1007/
BF00994018

42. Vapnik VN (1998) Statistical Learning Theory. Wiley. 736 p.

43. Aizerman A, Braverman E, Rozoner L (1964) Theoretical foundations of the potential function method
in pattern recognition learning. Autom Remote Control 25: 821–837.

44. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. Proceedings
of the Fifth Annual Workshop on Computational Learning Theory. COLT ‘92. New York, NY, USA:
ACM. pp. 144–152. Available: http://doi.acm.org/10.1145/130385.130401. Accessed 5 March 2014.

45. LeeWS, Liu B (2003) Learning with positive and unlabeled examples using weighted logistic regres-
sion. Twentieth international conference on machine learning, ICML-2003. Vol. 3. pp. 448–455.

46. Muñoz-Marí J, Bovolo F, Gómez-Chova L, Bruzzone L, Camp-Valls G (2010) Semisupervised one-
class support vector machines for classification of remote sensing data. IEEE Trans Geosci Remote
Sens 48: 3188–3197. doi: 10.1109/TGRS.2010.2045764

47. Sánchez-Azofeifa A, Rivard B, Wright J, Feng J-L, Li P, Chong MM, et al. (2011) Estimation of the distri-
bution of Tabebuia guayacan (Bignoniaceae) using high-resolution remote sensing imagery. Sensors
11: 3831–3851. doi: 10.3390/s110403831 PMID: 22163825

48. Caillaud D, Crofoot MC, Scarpino SV, Jansen PA, Garzon-Lopez CX, Winkelhagen AJ, et al. (2010)
Modeling the spatial distribution and fruiting pattern of a key tree species in a neotropical forest: meth-
odology and potential applications. PLoS ONE 5: e15002. doi: 10.1371/journal.pone.0015002 PMID:
21124927

49. Garzon-Lopez CX, Bohlman SA, Olff H, Jansen PA (2013) Mapping tropical forest trees using high-res-
olution aerial digital photographs. Biotropica 45: 308–316. doi: 10.1111/btp.12009

50. Garzon-Lopez CX, Jansen PA, Bohlman SA, Ordonez A, Olff H (2014) Effects of sampling scale on pat-
terns of habitat association in tropical trees. J Veg Sci 25: 349–362. doi: 10.1111/jvs.12090

51. Duin RPW, Tax DMJ (2000) Experiments with classifier combining rules. Multiple Classifier Systems.
Lecture Notes in Computer Science. Springer Berlin Heidelberg. pp. 16–29. Available: http://link.
springer.com/chapter/10.1007/3-540-45014-9_2. Accessed 21 May 2014.

52. Muñoz-Marí J, Bruzzone L, Camps-Valls G (2007) A support vector domain description approach to
supervised classification of remote sensing images. IEEE Trans Geosci Remote Sens 45: 2683–2692.
doi: 10.1109/TGRS.2007.897425

53. Gougeon FA (1995) A crown-following approach to the automatic delineation of individual tree crowns
in high spatial resolution aerial images. Can J Remote Sens 21: 274–284.

54. Meyer P, Staenzb K, Ittena KI (1996) Semi-automated procedures for tree species identification in high
spatial resolution data from digitized colour infrared-aerial photography. ISPRS J Photogramm Remote
Sens 51: 5–16. doi: 10.1016/0924-2716(96)00003-2

55. McGraw JB, Warner TA, Key TL, Lamar WR (1998) High spatial resolution remote sensing of forest
trees. Trends Ecol Evol 13: 300–301. PMID: 21238315

56. Leckie DG, Gougeon FA, Walsworth N, Paradine D (2003) Stand delineation and composition estima-
tion using semi-automated individual tree crown analysis. Remote Sens Environ 85: 355–369. doi: 10.
1016/S0034-4257(03)00013-0

57. Wang L, Gong P, Biging GS (2004) Individual tree-crown delineation and treetop detection in high-spa-
tial-resolution aerial imagery. Photogramm Eng Remote Sens 70: 351–357. doi: 10.14358/PERS.70.3.
351

58. Bunting P, Lucas R (2006) The delineation of tree crowns in Australian mixed species forests using
hyperspectral Compact Airborne Spectrographic Imager (CASI) data. Remote Sens Environ 101: 230–
248. doi: 10.1016/j.rse.2005.12.015

Operational Tree Species Mapping in a Diverse Tropical Forest

PLOS ONE | DOI:10.1371/journal.pone.0118403 July 8, 2015 20 / 21

http://dx.doi.org/10.1109/TGRS.2004.827262
http://dx.doi.org/10.1109/TGRS.2004.831865
http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
http://dx.doi.org/10.1109/TGRS.2012.2216272
http://dx.doi.org/10.1109/TGRS.2012.2216272
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF00994018
http://doi.acm.org/10.1145/130385.130401
http://dx.doi.org/10.1109/TGRS.2010.2045764
http://dx.doi.org/10.3390/s110403831
http://www.ncbi.nlm.nih.gov/pubmed/22163825
http://dx.doi.org/10.1371/journal.pone.0015002
http://www.ncbi.nlm.nih.gov/pubmed/21124927
http://dx.doi.org/10.1111/btp.12009
http://dx.doi.org/10.1111/jvs.12090
http://link.springer.com/chapter/10.1007/3-540-45014-9_2
http://link.springer.com/chapter/10.1007/3-540-45014-9_2
http://dx.doi.org/10.1109/TGRS.2007.897425
http://dx.doi.org/10.1016/0924-2716(96)00003-2
http://www.ncbi.nlm.nih.gov/pubmed/21238315
http://dx.doi.org/10.1016/S0034-4257(03)00013-0
http://dx.doi.org/10.1016/S0034-4257(03)00013-0
http://dx.doi.org/10.14358/PERS.70.3.351
http://dx.doi.org/10.14358/PERS.70.3.351
http://dx.doi.org/10.1016/j.rse.2005.12.015


59. Tochon G, Feret J, Martin RE, Tupayachi R, Chanussot J, Asner GP. (2012) Binary partition tree as a
hyperspectral segmentation tool for tropical rainforests. Geoscience and Remote Sensing Symposium
(IGARSS), 2012 IEEE International. pp. 6368–6371. doi: 10.1109/IGARSS.2012.6352716

60. Ferreira MP, Zanotta DC, Zortea M, Korting TS, Fonseca LMG, Shimabukuro YE. (2014) Automatic
tree crown delineation in tropical forest using hyperspectral data. Geoscience and Remote Sensing
Symposium (IGARSS), 2014 IEEE International. pp. 784–787. doi: 10.1109/IGARSS.2014.6946541

Operational Tree Species Mapping in a Diverse Tropical Forest

PLOS ONE | DOI:10.1371/journal.pone.0118403 July 8, 2015 21 / 21

http://dx.doi.org/10.1109/IGARSS.2012.6352716
http://dx.doi.org/10.1109/IGARSS.2014.6946541

