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Spatial and temporal information onplant functional traits are lacking in ecology,which limits our understanding
of how plant communities and ecosystems are changing. This problem is acute in remote tropical regions, where
information on plant functional traits is difficult to ascertain. We used Carnegie Airborne Observatory visible-to-
shortwave infrared (VSWIR) imaging spectroscopy with light detection and ranging (LiDAR) to assess the foliar
traits of Amazonian and Andean tropical forest canopies. We calibrated and validated the retrieval of 15 canopy
foliar chemicals and leaf mass per area (LMA) across a network of 79 1-hectare field plots using a new VSWIR-
LiDAR fusion approach designed to accommodate the enormous scale mismatch between field and remote sens-
ing studies. The results indicate that sparse and highly variable field sampling can be integrated with VSWIR-
LiDAR data to yield demonstrably accurate estimates of canopy foliar chemical traits. This new airborne approach
addresses the inherent limitations and sampling biases associated with field-based studies of forest functional
traits, particularly in structurally and floristically complex tropical canopies.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Plant functional diversity expresses many ecological processes rang-
ing from natural selection to CO2 exchange between the biosphere and
atmosphere. Despite its central importance to evolutionary and ecolog-
ical research, our knowledge of plant functional diversity remains very
limited in space and time. Specifically, a major knowledge gap has de-
veloped between small-scale field studies (≤1 ha) of plant functional
traits and broad-scale, remotely sensed estimates of vegetation proper-
ties. On the one hand, field studies provide an understanding of the
inter-relationships between functional traits, and the ways that plants
express those traits. In contrast, remotely sensed data from satellites
have proven reliable for estimating changes in vegetation cover and
structure, with far less success in measurements of functional diversity.

This scale-gap in functional ecology is exemplified in Amazonian for-
ests. For example, an array of tree- and plot-scale studies have been un-
dertaken to assess an important aspect of plant functional diversity —

canopy chemistry (e.g., Cuevas & Medina, 1988; Fyllas et al., 2009;
Reich, Ellsworth, & Uhl, 1995), yet collectively the literature has provid-
ed little spatial information on the chemical diversity of Amazon forest
communities. Moreover, field-based foliar trait studies are highly sus-
ceptible to the contributions ofmostly unknown, spatially-explicit envi-
ronmental filters like the underlying geology and soils, and variable
.

biological and structural diversity within and across communities,
whichwhen combined, may limit our understanding of plant functional
diversity and assembly. Only one study has sampled the many thou-
sands of Amazonian tree species required to resolve an assembly pat-
tern of canopy chemical traits (Asner, Martin, et al., 2014), but like all
other field studies, it could not provide spatially detailed information.
As a result, potential changes in tropical forest functional patterns con-
tinue to go unobserved, with cascading limitations on our ability to
model future changes in forest composition and functional processes
(Simonson, Coomes, & Burslem, 2014).

In contrast to the limitations of field studies, remote sensing of Am-
azonian forests has provided spatially contiguous information over
time, but the information hasmostly been limited to forest cover, defor-
estation and disturbance (e.g., Achard et al., 2014; Souza, Roberts, &
Cochrane, 2005). Far fewer studies have considered forest biomass
and phenology (e.g., Baccini et al., 2012; Samanta et al., 2010), or
plant community composition (Chambers et al., 2007; Tuomisto et al.,
2003). None have quantitativelymapped forest canopy chemistry, leav-
ing us with no direct way of linking leaf studies to large-scale processes
or environmental gradients throughout the region.

Quantification of canopy chemical patterns in Amazonian ecosys-
tems is needed to advance our understanding of functional biogeogra-
phy, and to observe functional change over time. Given the enormous
geographic extent of the Amazon region, remote sensing will be the
only way to develop an understanding of changing functional diversity.
However, remote sensing ultimately requires a connection to field
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measurements for purposes of calibration, validation and interpreta-
tion. Like most tropical forest regions, Amazonia presents a great chal-
lenge to pair field measurements with remotely sensed data (Fig. 1).
Bear in mind that these forest canopies reach 40 or more meters in
height on variable terrain, and are found in structurally complex assem-
blages comprised of thousands of species, often with no two locally
neighboring trees of the same species. It is simply infeasible to sample
enough of the canopy — whatever the trait of interest — in a way that
directly links field and remotely sense data at a scale commensurate
to large-area mapping applications. We need new remote sensing tech-
niques that are compatible with the relatively sparse way that forests
are sampled in the field.

Here we focused our functional trait work on awide variety of forest
canopy chemical compounds synthesized in leaves to support multiple,
Fig. 1. There exists a fundamental mismatch between field and remote sensing studies of forest
canopies, and often in complex terrain and remote regions,fieldworkmust necessarily be carried
plot, tree, branch and leaf levels. (a) In the case of canopy chemistry, individual trees such as
transport and analysis in laboratories. (b) Field plots are sampled, often sparsely, due to issue
that add uncertainty to canopy trait studies. Field sampling intensity, as shown here, may var
above, aircraft and satellite remote sensing instruments are also challenged by highly variab
some portions of most forest canopies are leafless at the time of observation, as shown in gray
the realities of field collection and those of remote sensing observations.
interdependent functional processes. Chlorophylls and carotenoids fa-
cilitate light capture and photo-protection. Nitrogen (N) and phospho-
rus (P) are required for carbon fixation, growth metabolism and
nucleic acids. Metabolic elements like rock-derived macronutrients
(e.g., Ca, K, Mg) and micronutrients (e.g., B, Fe) support multiple leaf
functions such as carbon allocation (Demarty, Morvan, & Thellier,
1984). Soluble carbon (C) — comprised of sugars, starch and pectin —

is synthesized as the initial energy store for the plant (Chapin, 1991;
Evans, 1989). Leaf structural compounds including lignin and cellulose
are generated to support strength and longevity, and to decrease palat-
ability to herbivores (Melillo, Aber, & Muratore, 1982). In tropical cano-
pies, phenolic compounds are synthesized primarily for chemical
defense of leaves (Coley, Kursar, & Machado, 1993). Light capture and
growth chemicals are also coordinated with variation in leaf mass per
canopy traits. In tropical forests, which contain thousands of species coexisting as very tall
out in a tactical or selective fashion.Major sampling trade-offs exist at regional, landscape,

this palm are climbed, and foliage from one or more branches is laboriously collected for
s of limited canopy access, as well as to control for vertical light gradients in the canopy
y widely from plot to plot, from commonly sparse to rarely complete inventory. (c) From
le illumination conditions that are convolved to variable canopy structure. Additionally,
crowns in the aerial photography. Methods are needed to bridge the huge gap between
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area (LMA) andwater content (Wright et al., 2004). This chemical port-
folio expresses multiple strategies undertaken by plants to maximize
fitness over the lifetime of the individual or species.

Remote sensing of canopy chemistry has primarily been attempted
with imaging spectroscopy, also known as hyperspectral imaging
(Curran, 1989; Ustin, Roberts, Gamon, Asner, & Green, 2004; Wessman,
Aber, Peterson, & Melillo, 1988b). Imaging spectrometers measure the
solar radiation reflected from a surface in narrow, contiguous spectral
channels covering a broad wavelength region (Goetz, Vane, Solomon, &
Rock, 1985). Recently two contrasting viewpoints have emerged in the ef-
fort to estimate canopy chemical properties from imaging spectroscopy.
On the one hand, applied studies indicate that foliar chemical traits can
be estimated from spectral reflectance and absorptance features
(Kokaly, Asner, Ollinger, Martin, & Wessman, 2009; Townsend, Foster,
Chastain, & Currie, 2003; Ustin et al., 2009). On the other hand, modeling
work suggests that the spectral signatures of plant canopies are some-
times dominated by structural variation (Knyazikhin et al., 2013), leaving
it unclear as to whether canopy chemistry can be retrieved from imaging
spectroscopy in the presence of these confounding effects.
Fig. 2. Topographic map of Peru with general location (circles) of 79 1-hectare Carnegie Spect
traits in the Andes to Amazon region.
In the case of forests, theory and models suggest that canopy chem-
istry can be estimated with imaging spectroscopy under specific mea-
surement conditions. First, the spectrometer must be capable of
acquiring high-fidelity measurements, defined by very high signal-to-
noise, detector uniformity and instrument stability, to record minute
variations in the spectral radiance features of vegetation (Asner &
Green, 2001; Green et al., 1998). Second, there must be sufficient
plant material cross-section and optical depth presented to the imaging
sensor for the foliar chemical traits to be most fully expressed in the
measured spectra. When canopies are optically thin, or with low leaf
area index (LAI), as can be the case inwater-limited environments, veg-
etation structure may be a more prominent contributor to reflectance
than foliar chemistry (Jacquemoudet al., 2009). In contrast, LAI and can-
opy cover are often high in tropical forests, and optically thick canopies
afford the best observing conditions for developing canopy chemical es-
timates from imaging spectroscopy (Asner, 2008; Atkinson, Foody,
Curran, & Boyd, 2000). Nonetheless, variation in LAI has more of an ef-
fect on reflectance in the near-infrared (e.g. 800–1200 nm) than it
does in the visible (400–700 nm) or shortwave-infrared (N1300 nm)
ranomics Project (CSP) field plots used for calibration and validation of canopy functional



Table 1
Descriptive information for 79 1-hectare field plots used for calibration and validation of
Carnegie Airborne Observatory (CAO) spectroscopic remote sensing of canopy chemical
traits and leaf mass per area. Site abbreviations are given followed by the number of plots
within each site. Sites are organized by the year they were imaged by the CAO. Soil orders
follow the U.S. Department of Agriculture (USDA) soil taxonomy system.

Year mapped Site Soil order Elevation (m) MAP (mm) MAT (°C)

2011 SUC-01; 1 Ultisol 116 2754 26.2
ALP-01; 1 Ultisol 131 2760 26.3
JEN-11; 1 Ultisol 131 2700 26.6
SUC-05; 1 Ultisol 132 2754 26.2
JEN-12; 1 Entisol 135 2700 26.6
ALP-30; 1 Entisol 142 2760 26.3
CUZ-03; 1 Inceptisol 205 2600 24.7
TAM-06; 1 Inceptisol 215 2600 24.0
TAM-09; 1 Inceptisol 220 2600 24.0
TAM-05; 1 Ultisol 223 2600 24.0
PJL-01; 1 Ultisol 420 5000 23.1
PJL-02; 1 Entisol 632 5000 23.1
SPD-02; 1 Inceptisol 1527 4628 18.5
SPD-01; 1 Inceptisol 1776 4341 18.5
TRU-08; 1 Inceptisol 1800 4341 18.5
TRU-04; 1 Inceptisol 2758 2678 13.0
TRU-03; 1 Inceptisol 3043 2678 13.0

2012
ESC-A; 3 Ultisol 945 1055 27.1
ESC-B; 11 Entisol 945 1055 27.1

2013
LA-A; 21 Ultisol 260 2700 24.0
LA-B; 11 Inceptisol 260 2700 24.0
SPA; 16 Inceptisol 1500 4628 18.5
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wavelength ranges (Myneni & Asrar, 1993), and this needs to be consid-
ered when selecting instrumentation and methods of spectral analysis.
Third, the relative importance of foliar chemistry and canopy structure
on the spectral reflectance signatures of canopies is spatially dependent;
Intra- and inter-canopy gaps diminish the contribution of foliar chemi-
cal variation on remotely sensed reflectance (Gerard & North, 1997).
Finally, the sun-to-canopy illumination and viewing conditions must
be controlled for in order to extract comparable spectral signatures
across images, landscapes and over time.

To address the many factors that make remote sensing of canopy
chemistry difficult with imaging spectroscopy, we developed a method
that links the often-sparse, field-based sampling of forest canopies with
a newmethod for sampling the spectral properties of the canopies. We
tested the method using airborne high-fidelity imaging spectroscopy
along a 3000 m elevation gradient stretching from lowland Amazonia
to treeline in the Peruvian Andes. With new measurements from the
Carnegie Airborne Observatory — Airborne Taxonomic Mapping Sys-
tem, or CAO-AToMS (Asner et al., 2012), we attempted to remotely
quantify 15 foliar chemicals and LMA. In doing so, we evaluated the pre-
cision and accuracy of remotely sensed foliar traits compared to those
derived from field and laboratory techniques.

2. Methods

2.1. Study region

Our study incorporated field and airborne measurements from for-
ested landscapes stretching from the western Amazonian lowlands to
submontane andmontane forests of the Peruvian Andes (Fig. 2). Across
these landscapes, elevation increases from about 100 m to more than
3000 m above sea level. Mean annual precipitation varies b1100 to
N5000 mm yr−1, and mean annual temperature ranges from 13 °C to
26 °C (Table 1). Soils in the lowland landscapes range from Ultisols on
clay terra firme (terrace) substrates to Inceptisols on alluvialfloodplains,
and to white sandy Entisols. In the Andean landscapes, soils are mostly
classified as Inceptisols and Entisols. Vegetation at all sites is humid,
broadleaf tropical forest. Canopies are densely foliated, with LAI ranging
from about 3–8 (Girardin et al., 2010). Fractional intercepted photosyn-
thetically active radiation (fIPAR) often exceeds 98% (Asner, Anderson,
et al., 2014).

2.2. Field plots

Throughout the Andes-to-Amazon study region, we established 79 1-
hectarefield plots for use in calibration and validation of our remote sens-
ing method (Fig. 2, Table S1). Like in most tropical forests, exceptional
taxonomic and structural diversity, and canopy inaccessibility,made it in-
feasible to sample all tree species in our field plots. In each plot, a range of
sampling intensities, from 3 to 38 trees with full sunlight canopies
(Tables S2–S4), was selected for collection (Fig. 1). These plots are part
of the Carnegie Spectranomics Project (CSP) network, and have been de-
scribed in detail by Asner, Martin, et al. (2014). Highly variable numbers
of tree collections reflect the reality of canopy access, both in terms of ter-
rain and tree climbing.

Leaf collections were conducted using tree-climbing techniques. For
each tree, two fully sunlit branches at the top of the canopywere selected
and cut, sealed in large polyethylene bags tomaintainmoisture, stored on
ice in coolers, and transported to a local site for processingwithin 3 h, and
usually less than 30min. A subset of fully expanded leaves was randomly
selected from the branches for scanning to determine fresh leaf area, and
weighing to record fresh and dryweights aswell as leaf water concentra-
tion. Additional leaveswere selected for oven drying at 70 °C and another
for acquisition of fresh leaf disks to be immediately frozen to -80 °C in liq-
uid N. Both subsets were maintained in their stabilized state for subse-
quent chemical analyses in the Carnegie Spectranomics Library,
Stanford, CA, USA. Values of fresh leaf area were divided by dry weight
to determine LMA. The protocol for scanning, water, and LMAdetermina-
tion is provided on the CSP website (http://spectranomics.ciw.edu).

Laboratory protocols for all chemical assayswere given byAsner and
Martin (2011) and Asner, Martin, et al. (2014), and see http://
spectranomics.ciw.edu. A brief overview is provided here. Dried leaves
were ground and analyzed for concentrations of P, base cations and
micronutrients (Ca, K, Mg, B, Fe) using Inductively Coupled Plasma
spectroscopy (ICP-OES; Therma Jarrel-Ash, IRIS Advantage, Waltham,
MA, USA) after microwave digestion in nitric acid solution (CEM
MARSXpress; Matthews, NC, USA). Total C and N were determined on
dry sample using a combustion-reduction elemental analyzer (Costec
Analytical Technologies Inc. Valencia, CA, USA). Cellulose, lignin and
sol-C were assayed using sequential digestion of increasing acidity in
an Ankom fiber analyzer (Ankom Technology, Macedon, NY, USA) and
are presented on an ash-free dry mass basis. Total phenols were mea-
sured from the frozen leaf disks colorimetrically using the Folin–
Ciocalteau method following extraction in 95% methanol and 48 h
dark incubation (Ainsworth & Gillespie, 2007).

2.3. Imaging spectrometer data

Airborne remote sensing data were acquired in August–September
2011, 2012 and 2013 using CAO-AToMS (Table 1, Fig. 3), which includes
a high-fidelity visible-to-shortwave Infrared (VSWIR) imaging spec-
trometer and a dual laser, waveform LiDAR (Asner et al., 2012).We col-
lected the data over each study landscape from an altitude of 2000 m
a.g.l., an average flight speed of 55–60 m s−1, and a mapping swath of
1200 m. The VSWIR spectrometer measures spectral radiance in 480
channels spanning the 252–2648 nm wavelength range in 5 nm incre-
ments (full-width at half-maximum). The VSWIR has a 34° field-of-
view and an instantaneous field-of-view of 1 mrad. At 2000 m a.g.l.,
the VSWIR data collection provided 2.0 m ground sampling distance,
or pixel size, throughout each study landscape. The LiDAR has a beam
divergence set to 0.5 mrad, and was operated at 200 kHz with 17°
scan half-angle from nadir, providing swath coverage similar to the
VSWIR spectrometer. Because the airborne data were collected along
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adjacent flightlines with 50% overlap, the LiDAR point density was two
laser shots m−2, or 8 shots per VSWIR pixel.

The LiDAR data were used to precisely ortho-geolocate the VSWIR
data, and to provide a means to mask canopy gaps and shadows,
water and exposed soil in the VSWIR data. To achieve this, the laser
ranges were combined with the embedded high resolution Global Posi-
tioning System-Inertial Measurement Unit (GPS-IMU) data to deter-
mine the 3-D locations of laser returns, producing a ‘cloud’ of LiDAR
data. The LiDAR data cloud consists of a very large number of
georeferenced point elevation estimates (cm), where elevation is deter-
mined relative to a reference ellipsoid (WGS 1984). We used these
points to interpolate a raster digital terrainmodel (DTM) for the ground
surface of each landscape. Thiswas achieved using a 10m×10mkernel
passed over each flight block, with the lowest elevation estimate in each
kernel assumed to be ground. Subsequent points were evaluated by
fitting a horizontal plane to each of the ground seed points. If the closest
unclassified point was b5.5° and b1.5 m higher in elevation, it was clas-
sified as ground. This process was repeated until all points within the
blockwere evaluated. The digital surfacemodel (DSM)was based on in-
terpolations of all first-return points. The measurement of the vertical
Fig. 3. Examples of color-infrared composite images of Carnegie Airborne Observatory Visible to Sh
on landscapes ranging from lowland Amazonia to the Andean treeline. Site names and elevations
difference between the DTM and DSM yielded a digital canopy model
(DCM) of vegetation height above ground.

The VSWIR data were radiometrically corrected from rawDN values
to radiance (W sr−1 m−2) using a flat-field correction, radiometric cal-
ibration coefficients and spectral calibration data collected in the labora-
tory. The standardized GPS pulse-per-secondmeasurementwas used to
precisely co-locate VSWIR spectral imagery to the LiDAR data collection.
We created a camera model to determine the three-dimensional loca-
tion and field-of-view of each sensor element, and combined it with
standardized timing information, for data co-registration. A smoothed
best estimate of trajectory (SBET), the LiDAR DTM, and the camera
model were then used to produce an image geometrymodel and obser-
vational data containing information on solar and viewing geometry for
each image pixel. These inputswere used to atmospherically correct the
radiance imagery using the ACORN-5 model (Imspec LLC, Glendale, CA,
USA). To improve aerosol corrections in ACORN-5, we iteratively ran the
model with different visibilities until the reflectance at 420 nm (which
is relatively constant for vegetated pixels) was 1%. Reflectance imagery
was corrected for cross-track brightness gradients using a bidirectional
reflectance distribution function (BRDF) modeling approach described
ortwave Infrared (VSWIR) imaging spectrometer data of 1-hectare study plots (white boxes)
are included in Table 1.
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by Colgan, Baldeck, Féret, and Asner (2012). The VSWIR imagery was
then orthorectified to the LiDAR DCM.

2.4. Linking field and remotely sensed data

Themethod for calibration, validation andmappingof canopy chem-
ical traits and LMA is presented in Fig. 4. The goals of the method are to
allow for the automated compilation of comparable imaging spectrom-
eter data sets over large geographic areas while minimizing the local-
scale effects of sun-sensor-canopy geometry, inter- and intra-crown
shading, forest gaps, and terrain-related artifacts. In addition, themeth-
od must be compatible with the necessarily sparse sampling of forest
canopies in the field.

To achieve this goal, we developed a data-fusion approach facilitated
by the collection and inter-calibration of boresight-aligned VSWIR and
Fig. 4. Pre-screening of (a) CAO Visible-to-Shortwave Infrared (VSWIR) imaging spectrometer
gaps. (c) MinimumNDVI threshold of 0.8 ensures sufficient foliar cover in each analysis pixel. (
shade, and groundandwater surfaces. (e) The resulting suitability imageprovides an indication
of the suitability index.
LiDAR observations. The co-aligned VSWIR and LiDAR data were proc-
essed together to develop a suitability map for leaf trait estimation at
a prescribed grid cell size (Fig. 4). We selected 1-hectare resolution
grid cells to match the size of many typical forest field plots (Peacock,
Baker, Lewis, Lopez-Gonzalez, & Phillips, 2007), and the spectral signa-
ture of each 1-hectare cell was derived by averaging the spectra of all
2-meter resolution VSWIR measurements that passed the following fil-
tering criteria: (i) Normalized Difference Vegetation Index (NDVI)
≥0.8; (ii) vegetation height ≥2.0 m; and (iii) minimal intra- or inter-
canopy shade in the VSWIR pixel. Through detailed survey of more
than 7 million ha of VSWIR imagery over Andean and Amazonian for-
ests,we have found that aminimumNDVI threshold of 0.8 is highly con-
servative, allowing most tropical canopy foliage into the trait analysis,
while excluding areas of un-foliated canopy. The 2-meter minimum
height requirement removes bare ground and short non-forest
data using (b) embedded Light Detection and Ranging (LiDAR) data on canopy height and
d) Combining LiDAR and solar-viewing geometry, a mask is generated to remove pixels in
of pixels that can be used for chemometric analysis. Herewe only usedpixels in the top 50%
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vegetation such as exposed grass cover. The shademask is derived from
a ray tracing model that precisely identifies canopy location in unshad-
ed and unobstructed view of the VSWIR spectrometer (Asner et al.,
2007). This LiDAR-based shade mask removes VSWIR pixels that are
fully or partially shaded by adjacent foliage, branches or crowns. To-
gether, these filters provided a pixel-by-pixel (2.0 m) suitability map
within each 1-hectare grid cell, fromwhich average spectral reflectance
was computed (Fig. S2). Thisfiltering technique has the advantage of re-
ducing the total canopy analysis area to a level analogous to the “sunlit
canopy foliage” criterion often used in field collections of forest canopy
foliage. However, it also removes within-plot variation in canopy spec-
tral reflectance properties, whichmay be considered important in other
higher spatial resolution (b1 ha) studies.

A histogram reporting the fraction of the forest canopy that passed
through the filtering process in each of the 79 1-hectare plots is
shown in Fig. 5a. The mean value for suitable VSWIR sampling in each
1-hectare plot was 52%. In contrast, on average only 5% of each plot
was covered by canopies that were sampled in the field (Fig. 5b). This
inherent mismatch in scale cannot be directly overcome due to the ex-
treme difficulty of field sampling. However, by creating similar sam-
pling conditions for field-accessible and remotely sensed portions of
full-sunlight, highly foliated canopies in each plot, the scale-gap be-
tween these disparate data types was effectively minimized.

Following the preparation of the filtered VSWIR reflectance spectra
(Fig. 6), we convolved them to 10-nm bandwidth and applied a
brightness-normalization adjustment (Fig. S1). Brightness normaliza-
tion utilizes ‘spectral angle’ to mitigate differences in brightness that
may arise from internal canopy shade, which is proportional to LAI
(Kruse et al., 1993; Myneni, Ross, & Asrar, 1989). This reduces the con-
tribution of varying LAI to chemometric determinations of foliar traits
from remotely sensed data (Feilhauer, Asner, Martin, & Schmidtlein,
2010). The resulting spectra were trimmed at the far ends (b410 nm,
N2450 nm) of the measured wavelength range, as well as in regions
dominated by atmospheric water vapor (1350–1480, 1780–2032 nm).
Fig. 5. (a) Histogram showing the fraction of 2-meter CAO VSWIR pixels that passed the
pre-screening criteria (Fig. 4) in each of the 79 1-hectare field plots. On average, only
52% of the 2500 VSWIR pixels per hectare were considered appropriate for spectroscopic
analysis. (b) Histogram showing the fraction of each 1-hectare plot represented in the
field-based canopy sampling effort. On average, just 3–5% of the area of the plots could
be sampled in the field due to the inaccessibility of tall tropical forest canopies.
We used Partial Least Squares Regression (PLSR; Haaland & Thomas,
1988) to quantitatively link the airborne VSWIR spectroscopy to field-
collected, lab-assayed foliar traits. The PLSR approach is beneficial be-
cause it utilizes the continuous spectrum as a single measurement rath-
er than in a band-by-band type of analysis (Boulesteix & Strimmer,
2006;Martens, 2001). To avoid statistical over-fitting, the number of or-
thogonal spectral dimensions or vectors used in the PLSR analysis was
estimated by minimizing the Prediction Residual Error Sum of Squares
(PRESS) statistic (Chen, Hong, Harris, & Sharkey, 2004). The PRESS
statistic was calculated through a leave-one-out cross-validation proce-
dure for each PLSR model that was run. This cross-validation procedure
iteratively generates N − 1 regression models while reserving the rest
of the sample from the input data set until the root mean squared
error (RMSE) for the PRESS statistic is minimized. The precision and ac-
curacy of the PLSRmodel for each foliar trait were assessed based on the
coefficient of determination (R2) and the RMSE, respectively, between
remotely sensed and field-measured trait values.

To test the robustness and repeatability of the PLSR–PRESS approach
with 1-hectare resolution filtered and brightness-normalized VSWIR
data, we split the 79 forest plots into calibration (n=55) and validation
(n = 24) subsets each spanning the range of trait values. To minimize
model redundancy, we randomly selected 70% of the plots from the
55 plots to generate the PLSR models. For each iteration and leaf trait,
the PLSR-PRESS method was run 1000 times on the calibration data to
determine producer-based calibration precision and accuracy (Serbin,
Singh, McNeil, Kingdon, & Townsend, 2014). The PLSR equations
resulting in robust models (R2 N the mean value of the 1000 iterations)
were then used to estimate each canopy trait in the 24 validation plots.
This provided a way to calculate a mean and standard deviation of each
remotely sensed trait as compared against the field-based value.

3. Results

3.1. Canopy chemical variation

The foliar chemistry and LMA of sunlit canopy trees and lianas
spanned a very wide range of values at both site and regional scales
(Tables 2, S2–S4). Our range of values meets that which has been re-
ported in global and cross-biome synthesis studies (Poorter,
Niinemets, Poorter, Wright, & Villar, 2009; Wright et al., 2004), as well
as in a much larger Andes and Amazon canopy chemical data set
(Asner, Martin, et al., 2014). By covering a broad range of chemical di-
versity among taxa and across sites, we had a sufficient data set to ade-
quately test the general relationships between foliar traits and imaging
spectroscopy for humid tropical forests.

3.2. Calibration

The 1-hectare filtered and brightness-normalized VSWIR data
calibrated well against a suite of foliar traits representing light cap-
ture and growth, structure and defense, and maintenance and me-
tabolism (Table 2). All light capture and growth traits, including
chlorophyll a + b, carotenoids, N, P, LMA, water and soluble C
showed excellent calibration performances, with R2 = 0.55–0.71 and
%RMSE = 5–16%, where %RMSE is calculated in terms of the original
value for each trait as 100 ∗ RMSEtrait / μtrait. Variances among the
1000 PLSR model runs were about 8–18%, both in terms of R2 and
RMSE. The number of spectral (latent) vectors selected among the
1000 PLSR model iterations was also consistent.

Among the structure-defense traits, lignin and total C were
calibrated with the highest precision (R2 = 0.54–0.71) and accuracy
(%RMSE = 2.7–14.9%) (Table 2). Individual calibration runs indicated
a wider range of performances as compared with those involving the
light capture and growth traits. Phenols and cellulose, however, had
weaker calibration performances, and yet remained highly significant
(p b 0.001). For foliar maintenance-metabolism traits, Ca performed



Fig. 6. (a) Examples of canopy reflectance spectra derived from the mean number of pixels suitable for chemometric analysis following pre-screening within each 1-hectare plot. Zoom
images of spectra are provided for (b) visible and (c) shortwave-infrared regions to reveal subtle features associated with varying chemical concentrations.
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the best in terms of precision (R2 = 0.79 ± 0.17) and accuracy
(%RMSE = 16.9%) (Table 2). Other cation calibrations were highly sig-
nificant (p b 0.001), but exhibited lower precision and accuracy. We
found that the number of latent spectral vectors automatically selected
among the 1000model runs varied narrowly for most traits, with a few
exceptions such as for Ca and total C. Greater variation in the number of
latent vectors indicates instability in the spectral-to-chemical relation-
ships among model runs.

The standardized PLSR coefficients indicated that all wavelength re-
gions were important for most of the foliar traits (Fig. 7). In this figure,
departures from the zero-line indicate spectral features that are most
important in determining the foliar trait of interest. There was consis-
tency in the spectral regions required for chlorophyll a + b, carotenoid
and N calibrations as indicated in the correlation between PLSR
weightings (Table S5). Specifically, the visible region along the 700-
nm ‘red edge’ and in the blue (400–500 nm) proved to be important
contributors to the PLSRmodels for these traits. There were also impor-
tant contributions from the shortwave-IR region, particularly in the
1500–1700 nmrange, indicative of protein–N interactionswith solar ra-
diation (Curran, 1989).

We also found that the visible and shortwave-IR were critical to the
estimation of P, LMA, soluble C and water (Fig. 7). However, for these
traits, the near-IR played an additionally important role, particularly in
the 1000–1300 nm range. Moreover, the 2000–2500 nm range contrib-
uted to the calibration of the spectral data to LMA and soluble C. The
other chemistries representing structure-defense and maintenance-
metabolism trait groups had regression coefficients that also required
multiple spectral features across the 400–2500 nm wavelength range.
None of the chemical traits had the same spectral weightings, and the
vast majority of chemical traits required portions of the spectrum in
combinations that were not highly correlated among PLSR coefficients
(Table S5), suggesting a unique role of each trait in determining the
spectral reflectance measured from the VSWIR spectrometer.

3.3. Validation

Validation models indicated highly significant results for all traits,
with the exception of K (p b 0.001; Table 3). The best performances
were achieved for photosynthetic pigments, N, P, LMA, Fe and total C.
Regressed against field data, their R2 values ranged from 0.39–0.58 and
%RMSE of 14–34%. A somewhat lower performing group in terms of pre-
cision includedwater, soluble C, lignin and cellulose, although their rela-
tive accuracies remained relatively high (%RMSE= 6–24%). The poorest
performers were phenols and base cations (%RMSE = 24–63%).



Table 2
Calibration of canopy chemical traits and leaf mass per area (LMA) using airborne high-fidelity visible-to-shortwave infrared (VSWIR) spectroscopy. Mean ± standard deviation of PLSR
model results (R2; RMSE) calculated randomly selected field plots containing the canopy trait range shown.

R2 RMSE %RMSE Vectors Trait range

Light capture and growth
Chlorophyll ab⁎ (mg g−1) 0.70 ± 0.07 0.84 ± 0.10 15.66 5 (1) 2.65–8.53
Carotenoids⁎ (mg g−1) 0.63 ± 0.08 0.16 ± 0.02 13.15 5 (1) 0.69–1.84
N⁎ (%) 0.54 ± 0.09 0.30 ± 0.03 14.47 5 (1) 1.28–3.33
P⁎ (%) 0.71 ± 0.10 0.02 ± 0.00 16.59 6 (2) 0.06–0.26
LMA⁎ (g m−2) 0.69 ± 0.08 11.87 ± 1.55 9.99 5 (2) 76.0–180.0
Water (%) 0.49 ± 0.13 2.95 ± 0.38 5.22 5 (2) 44.3–63.9
Soluble carbon (%) 0.49 ± 0.14 4.40 ± 0.87 9.16 4 (3) 36.0–71.9

Structure and defense
Phenols (mg g−1) 0.33 ± 0.10 20.30 ± 1.77 18.37 1 (1) 51.0–156.2
Lignin (%) 0.51 ± 0.15 3.51 ± 0.62 14.94 3 (2) 9.2–33.5
Cellulose (%) 0.38 ± 0.12 2.33 ± 0.34 14.34 3 (3) 8.2–21.7
Total carbon (%) 0.69 ± 0.16 1.35 ± 0.35 2.67 6 (3) 42.1–54.6

Maintenance and metabolism
Ca⁎⁎ (%) 0.79 ± 0.17 0.14 ± 0.06 16.99 9 (5) 0.04–2.96
B⁎ (μg g−1) 0.53 ± 0.07 7.31 ± 0.89 43.33 5 (1) 4.74–55.98
Fe⁎ (μg g−1) 0.56 ± 0.09 12.39 ± 1.94 27.29 4 (1) 21.8–120.1
K⁎ (%) 0.42 ± 0.22 0.15 ± 0.04 24.57 4 (3) 0.36–1.51
Mg⁎ (%) 0.34 ± 0.19 0.06 ± 0.01 31.78 3 (3) 0.07 – 0.50

RMSE = root mean square error in units of the original chemical assays.
%RMSE = RMSE expressed as a percentage of the mean value of the leaf trait.
R2 = regression coefficient for K-fold cross-validation data used during PLSR analyses.
Vectors = number of spectral weighting vectors, or orthogonal degrees of freedom, from the VSWIR data used for the chemical determination.
⁎ Indicates that chemical values were natural log-transformed for PLSR analysis.
⁎⁎ Square-root of chemical value.
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4. Discussion

We have found that a suite of canopy foliar chemical traits and LMA
can be estimated using airborne high-fidelity visible-to-shortwave in-
frared (VSWIR) imaging spectroscopy. Because field techniques are
often severely under-sample foliar traits in forests, thereby struggling
to provide systematic, repeat estimates of canopy properties at the
stand level, imaging spectroscopy can greatly reduce the inherent limi-
tations and sampling biases associated with field work. This issue has
been particularly problematic in tall statured, floristically complex trop-
ical forests, where data quality continues to go mostly unmonitored,
and where geographic sampling biases limit the interpretability of
plot-network data.
4.1. Observing conditions for remote sensing of functional traits

Remote sensing of canopy chemistry is not a new idea, and enormous
progress has beenmade since the late 1980s toward the goal of develop-
ing sensors and techniques to remotely probe the chemical content of
vegetation (Homolová, Malenovsky, Clevers, García-Santos, &
Schaepman, 2013; Kokaly et al., 2009; Martin, Plourde, Ollinger, Smith,
& McNeil, 2008; Ustin et al., 2009; Wessman, 1992). However, the con-
volution of vegetation structure, foliar chemistry and observation geom-
etry (sun and sensor) has also impeded progress in understanding how
best to isolate foliar chemistry within remotely sensed data. Variation
in canopy structure, particularly LAI, leaf angle distribution, and within-
canopy gaps can dominate optical reflectance signatures (Asner, 1998).
There also often exists spatial covariance of canopy structure and chem-
istry (Ollinger, 2011). Moreover, current canopy reflectancemodels will,
virtually by their formulation, simulate a diminished effect of foliar
chemistry on spectral-optical signatures, particularly in the near-
infrared (Knyazikhin et al., 2013), but this is largely an artifact of the in-
ability of current models to simulate the multiple chemical constituents
that drive foliar spectral properties, especially in the shortwave-infrared
(Curran, 1989; Feret et al., 2008; Jacquemoud et al., 2009).
The best chance to isolate the effects of foliar traits on canopy reflec-
tance signatures relies on reducing the relative contribution of canopy
structure, and by controlling for solar and viewing geometry. Reliable
plant functional trait mapping can be achieved by pre-screening
portions of the canopy for gaps, low LAI, and shadows. While low LAI
portions of the canopy can be removed with a simple NDVI filter, gaps
and shadows require more detailed structural information. Asner and
Martin (2008) first showed how LiDAR can effectively be used for this
task, but only if the LiDAR data are tightly alignedwith the spectrometer
data to provide precise sun-to-canopy-to-sensor geometry for every
pixel (Asner et al., 2012). This technique, combined with LiDAR-
derived minimum vegetation height data, results in a suitability map
at high spatial resolution (e.g., 2 m) within which the most appropriate
spectral data can be selected for chemometric analysis (Fig. 4). By carry-
ing out these steps, the pre-screened vegetation canopies becomemore
comparable over large tracts of otherwise highly variable canopy struc-
tural and terrain conditions.

In this study, the NDVI ≥0.8 filter was conservative, allowing into
the calibration and validation at least 95% of the canopy data within
the 79 1-hectare field plots spread throughout Amazonian and the An-
dean forests (data not shown). The 2-meter minimum height filter re-
moved water bodies, clearings, landslide areas, and large gaps. The
majority of the filtering, however, was driven by the LiDAR-derived
intra- and inter-crown shade masks. Using this approach, our calibra-
tion and validation underwent enormous filtering down to about 52%
of each forest plot, but with wide variation between plots (20–100%;
Fig. 5a).

Beyond the spatialfiltering approach used here, additionalmeasures
can be taken tomaximize the expression of foliar traits in imaging spec-
trometer data. One approach is brightness normalization, which helps
reduce the contribution of varying LAI and foliar clumping on canopy
spectral reflectance (Feilhauer et al., 2010). Through brightness normal-
ization of the VSWIR spectra that passed the spatial filtering step, the
expression of foliar traits should be maximized. Our pre-screening and
brightness normalization approach facilitated the calibration of multi-
ple foliar chemical traits and LMA against VSWIR imaging spectrometer



Fig. 7.Mean and standard deviation of spectral weighting vectors for PLSR chemometric results for 1000 iterations reported in Table 2. (a) Chlorophyll a + b (chl a + b); (b) carotenoids;
(c) nitrogen; (d) phosphorus, (e) leaf mass per area (LMA); (f) water; (g) soluble carbon (sol-C), (h) phenols; (i) lignin; (j) cellulose, (k) total carbon; (l) calcium; (m) boron; (n) iron;
(o) potassium; (p) magnesium.
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data (Table 2). Rarely has a suite of foliar traits been calibrated against
airborne imaging spectrometer data, and the demonstrably high perfor-
mance is due to three interacting factors. First, as stated, pre-screening
and brightness normalization reduces noise caused by variable canopy
structure and shade. Second, ourfield-collected foliar trait data also con-
trolled for full sunlight canopy position, so the field data were made ra-
diometrically and biologically more compatible with the filtered VSWIR
data. Third, ourfield data span the range of known canopy chemical var-
iation in terrestrial plants. The issue of chemical range in the PLSRmeth-
odology cannot be over-emphasized; a wide chemical input range is
required in a similar way to the requirements of laboratory assay cali-
brations (Martens, 2001). Our canopy chemical data cover an enormous
range of values, reflecting evolutionary processes that have led to the di-
versification of species and communities on contrasting geologic
substrates and climatic conditions across the western Amazon (Asner,
Martin, et al., 2014).

4.2. Assessing remote sensing performance

The calibration exercise revealed highly significant quantitative link-
ages between VSWIR spectroscopy and a suite of foliar functional traits
thatmediate light capture, growth, structure, defense, maintenance and
metabolism. Model calibration performances varied depending upon
the random selection of input field plots, and are in general agreement
with previous PLSR calibration studies at both leaf and canopy scales
(Curran, 1989; Knox et al., 2011; Kokaly et al., 2009; Martin & Aber,
1997; Martin et al., 2008; Peterson et al., 1988; Skidmore et al., 2010;
Ustin et al., 2009). Our random model selection approach provided a



Table 3
Independent field validation of canopy chemical traits and leaf mass per area (LMA) using
airborne high-fidelity visible-to-shortwave infrared (VSWIR) spectroscopy. Mean ± -

standard deviation of validation statistics are reported.

R2 RMSE %RMSE

Light capture and growth
Chlorophyll ab⁎ (mg g−1) 0.58 ± 0.05 1.50 ± 0.71 28.14
Carotenoids⁎ (mg g−1) 0.49 ± 0.06 0.25 ± 0.08 21.20
N⁎ (%) 0.48 ± 0.05 0.31 ± 0.06 15.19
P⁎ (%) 0.39 ± 0.05 0.04 ± 0.03 34.86
LMA⁎ (g m−2) 0.53 ± 0.05 22.88 ± 6.46 19.25
Water (%) 0.34 ± 0.05 3.86 ± 0.44 6.83
Soluble carbon (%) 0.34 ± 0.04 6.89 ± 2.19 14.33

Structure and defense
Phenols (mg g−1) 0.04 ± 0.01 26.60 ± 1.99 24.07
Lignin (%) 0.26 ± 0.04 5.65 ± 1.16 24.08
Cellulose (%) 0.20 ± 0.04 3.42 ± 1.92 21.04
Total carbon (%) 0.44 ± 0.04 3.09 ± 0.43 6.09

Maintenance and metabolism
Ca⁎⁎ (%) 0.52 ± 0.08 0.50 ± 0.11 33.34
B⁎ (μg g−1) 0.30 ± 0.07 9.64 ± 1.88 57.12
Fe⁎ (μg g−1) 0.48 ± 0.04 12.27 ± 5.41 27.03
K⁎ (%) 0.05 ± 0.02 0.33 ± 0.43 55.66
Mg⁎ (%) 0.21 ± 0.06 0.09 ± 0.04 45.45

RMSE = root mean square error in units of the original chemical assays.
%RMSE = RMSE expressed as a percentage of the mean value of the leaf trait.
R2 = regression coefficient for field validation data.
⁎ Indicates that chemical values were natural log-transformed for PLSR analysis.
⁎⁎ Square-root of chemical value.

25G.P. Asner et al. / Remote Sensing of Environment 158 (2015) 15–27
way to track stability and repeatability during calibration, and to fore-
cast performance in validation. Doing so revealed that most light-
capture and growth traits, as well as total C, lignin and Ca, produce the
most consistent and accurate calibrations (Table 2). In contrast, random
selection indicated thatmost base cations (e.g., K,Mg, B, Fe) and phenols
showed more erratic calibration behavior. Interestingly, %RMSE values
were the better predictor of howwell the chemicalswould be estimated
during the validation phase of the study. This strongly suggests that ac-
curacy (RMSE) is the better analytical metric of performance than is R2,
or precision, which is under-emphasized in the ecological and remote
sensing literature (Homolová et al., 2013; Townsend et al., 2003).

Despite the high-precision calibrations of many foliar traits to air-
borne VSWIR spectroscopy, the validation exercise proved more chal-
lenging to interpret in terms of user-based performance. Experimenting
with the field and airborne data, we feel that a validation accuracy of
25% relative RMSE or lower indicates very good performance. This is par-
ticularly true given the relative high per-sample and project-level uncer-
tainty of field and laboratory studies of foliar traits (Townsend, Asner, &
Cleveland, 2008; Vitousek, 1982; Wessman, Aber, Peterson, & Melillo,
1988a), and particularly given the extreme spatial and biological mis-
matches between field and remotely sensed measurements inherent in
this study (Fig. 5). Even given our stringent pre-screening for full sunlit,
highly foliated canopies in the VSWIR data, the mismatch to the field es-
timates of canopy traits remained large. Limitations of local access to par-
ticular crowns within the canopy are common, especially if the protocol
focuses on obtaining samples from fully sunlit portions of the canopy.
Tropical forests are spatially complex, multi-layered structures that can-
not be easily reached from the ground. Relatively extreme climbing tech-
niques are needed in remote forests such as those incorporated into this
study, and in the end, sometimes only a few crowns can be accessed in an
entire hectare of forest. At other times, the foliage from many canopies
can be acquired (up to 38 in one of our field plots). We also note that
both the field and remotely sensed data were collected over a period of
three years, reflecting the realities of field work in remote regions of
the tropics. Different combinations of the 2011, 2012, and 2013 airborne
data likely did not temporally match the field data during the random
selection of plots used in the validation models. Inter-annual variation
in canopy chemistry and phenology would thus certainly have affected
the validation process, especially in the context of model performances.

It is therefore quite surprising tofind that the accuracy ofmost light-
capture, growth, structure and defense traits fell in the b25% error cate-
gory (Table 3). This finding strongly suggests that controlling for sunlit
canopies provides a unique way to bridge the scale-gap between field
and spectroscopic measurements at plot to landscape scales. In effect,
we used our general ecological knowledge of foliar trait adjustment to
average solar illumination conditions (Kitajima, Mulkey, & Wright,
2005; Poorter et al., 2009), as a functional scaling link between
handpicked foliage collections and plot-scale remote sensing observa-
tions. Our method, which reflects the realities of doing field and remote
sensing work in conditions of very high biodiversity and high structural
heterogeneity, has evolved over years of trial and error in the field and
from the air. It is thus likely to be repeatable and scalable to other veg-
etation types and imaging spectrometers, including future spaceborne
instruments.
4.3. Next steps

Using a novel combination of VSWIR imaging spectroscopy and
LiDAR data from the Carnegie Airborne Observatory, we have shown
that multiple foliar chemical traits and LMA can be estimated for
Amazonian and Andean forests. These forested regions remain almost
completely unexplored and inaccessible to scientific study, and thus
wemust continue to work towardmethods that greatly extend the lim-
ited capabilities of sparse field plots, which inherently cannot capture
the geographic pattern of functional trait variation.

Further testing of themethods presented herewill be required before
the approach can be made operational with other airborne and future
spaceborne imaging spectrometers. However, we do note that the abso-
lute and relative performance of each chemical trait and LMA calibration
with the CAO VSWIR spectrometer data closely mirrored the model-
predicted performances derived from a worldwide collection of foliar
chemical and spectral data (Asner et al., 2011). Correspondence between
the results from this study and those using a completely different, global-
ly distributed data set suggests that our approach based on a pre-filtered,
VSWIR data can be used in other regions.With the CAO, we intend to use
this capability to map canopy functional traits of forests. In the longer-
term, a similar approach should be attempted using forthcoming replicas
of the Carnegie VSWIR–LiDAR combination, including the new U.S.
National Ecological Observatory Network (NEON) airborne systems
(Kampe et al., 2010). The NEON systems were designed using CAO spec-
ifications and engineeringdrawings, so the transferability of the approach
presented here should be straightforward. Future spaceborne imaging
spectrometers such as the European Union's EnMAP and the proposed
NASAHyspIRI (Stuffler et al., 2007) should be capable of utilizing a subset
ormodification of our approach, for example, by utilizingminimumNDVI
and/or fractional canopy cover estimation as a pre-filtering step before
chemometric study of the Earth's ecosystems.
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