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Abstract

Human activity and land-use change are dramatically altering the sizes, geographical distributions
and functioning of biological populations worldwide, with tremendous consequences for human
well-being. Yet our ability to measure, monitor and forecast biodiversity change – crucial to
addressing it – remains limited. Biodiversity monitoring systems are being developed to improve
this capacity by deriving metrics of change from an array of in situ data (e.g. field plots or species
occurrence records) and Earth observations (EO; e.g. satellite or airborne imagery). However,
there are few ecologically based frameworks for integrating these data into meaningful metrics of
biodiversity change. Here, I describe how concepts of pattern and scale in ecology could be used
to design such a framework. I review three core topics: the role of scale in measuring and mod-
elling biodiversity patterns with EO, scale-dependent challenges linking in situ and EO data and
opportunities to apply concepts of pattern and scale to EO to improve biodiversity mapping.
From this analysis emerges an actionable approach for measuring, monitoring and forecasting
biodiversity change, highlighting key opportunities to establish EO as the backbone of global-
scale, science-driven conservation.
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INTRODUCTION

Global biodiversity monitoring is a crucial but challenging
task, as human activities are changing the structure and com-
position of biological populations at all taxonomic levels
(Dirzo et al. 2014; Ceballos et al. 2017). Mitigating biodiver-
sity loss will require understanding the rates, magnitudes and
geography of these changes (Laurance et al. 2012; Mendenhall
et al. 2014). However, considering the scope of action
required for mitigation, our knowledge of global biodiversity
change remains limited (Daily 1999; Pereira et al. 2012). Fur-
thermore, what is known about biodiversity change is compli-
cated by taxonomic, geographical and temporal scale biases
(Boakes et al. 2010; Donaldson et al. 2016; Gonzalez et al.
2016).
Novel biodiversity monitoring systems are being developed

to systematically assess change for multiple taxa over large
extents (Scholes et al. 2008, 2012; Fern�andez et al. 2015). To
support these systems, several groups have developed novel
approaches to monitor species, communities and ecosystems
over time using globally consistent metrics of change (Butch-
art et al. 2010; Jetz et al. 2012; Metzger et al. 2013; Pereira
et al. 2013). These metrics are biological, sensitive to change
and ecosystem agnostic, enabling consistent monitoring proto-
cols worldwide (e.g. GEO BON 2017). These efforts have
been greatly bolstered by increasing access to globally avail-
able in situ biodiversity observations (Geijzendorffer et al.
2016; Culina et al. 2018). However, as in situ data alone are
often insufficient for assessing global diversity patterns (sensu

the Linnean and Wallacean shortfalls; Bini et al. 2006; Brito
2010), researchers have looked for complementary data to
support monitoring efforts.
Earth observations (EO; e.g. satellite or airborne imagery)

complement in situ data by providing repeat, thematically
consistent and spatially continuous measurements of terres-
trial ecosystems, characterising biodiversity patterns over
large, undersampled areas. However, linking field and EO
data faces many challenges. These include overcoming incom-
plete sampling efforts (i.e. where field measurements do not
adequately characterise the extent of environmental variation;
Marvin & Asner 2016) and reconciling scale mismatches (e.g.
where field plots are much smaller than EO pixels). Develop-
ing EO-based biodiversity monitoring systems will require a
comprehensive approach to link these data (Turner 2014; Pet-
torelli et al. 2016).
Scale plays a key role in both ecology and EO science, and

identifying shared scaling dynamics could provide a basis for
bridging these disciplines. Understanding the roles of spatial
and temporal scales in biological communities is a central
topic in ecology, and is referred to as the problem of pattern
and scale (Wiens 1989; Levin 1992). The problem of pattern
and scale emphasises that multiple ecological processes often
drive biodiversity patterns, and that these processes can act
across multiple spatial and organismal scales (Withers &
Meentemeyer 1999; Waring & Running 2010; Chase & Knight
2013). Therefore, there is rarely a single measurement scale
that best identifies how specific processes drive patterns
(Hutchinson 1953). EO measurements are subject to similar
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scale dependencies: the grain size of an EO sensor often deter-
mines which patterns can be measured (Fig. 1; Lechner et al.,
2012; Anderson 2012; Nagendra et al. 2013), and multi-scale
EO analyses can reveal the influences of multiple processes
driving biodiversity patterns (Keil et al. 2012; Taylor et al.
2015). Applying concepts of pattern and scale in ecology to
EO could provide a means to better link these fields, paving
the way for improved biodiversity monitoring.
Here, I review the scales at which EO have been used to

measure and model metrics of biodiversity change, and the
role of scale in linking field data with EO. This is not strictly
a review of which biodiversity patterns EO can measure (sensu
Roughgarden et al. 1991; Turner et al. 2003; Wang et al.
2010; Pettorelli et al. 2014b; Lausch et al. 2016). Instead, this
review addresses three questions: (1) At what scales have cur-
rent and historical EO been used to measure or model spatial
biodiversity patterns? (2) What are the major challenges link-
ing field-based and EO-based biodiversity measurements, and
how does scale impact these challenges? and (3) How can con-
cepts of pattern and scale, applied to EO, facilitate the trans-
lation of biodiversity patterns across scales? This work aims
to further integrate EO into biodiversity monitoring systems,
and to support science-driven conservation efforts.

COMPONENTS OF PATTERN AND SCALE IN ECOLOGY

Explorations of pattern and scale in ecology focus on two dis-
tinct but related measurement scales: grain size and extent
(Box 1). In this review, I refer to these scales in a spatial
sense, though temporal grain size could describe the frequency
of observations (e.g. one diurnal cycle for net primary produc-
tivity) and temporal extent could describe the total time over
which an ecological process occurs (e.g. phenological variation
throughout a year). Furthermore, I adopt the classes and met-
rics of biodiversity change from the Essential Biodiversity
Variables framework (Pereira et al. 2013), and refer to these
metrics as biodiversity patterns. This framework captures the
multiple biological scales of diversity (i.e. variation in genes,
species, communities and ecosystems) as opposed to a more
narrow interpretation that refers to biodiversity as variations
in species richness, abundance and evenness. I believe these
disaggregated classes and metrics more comprehensively
address the patterns that can be measured and modelled using
EO. In this section I discuss how concepts of pattern and
scale in ecology apply in biodiversity and EO contexts, then I
review domains of scale, which constrain efforts to generalise
patterns across scales.

Figure 1 Log–log plot of spatial and temporal and grain sizes for 44 current and historic satellite Earth observation (EO) sensors, coloured by biodiversity

pattern type. Several sensors have been used to measure multiple biodiversity patterns, and the most cited or most novel were selected in these cases. See

Table S1 for references to which patterns were measured by each sensor, and for the accompanying study.
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Changing measurement scales

Measurement scales are often selected to understand biodiver-
sity patterns or ecological processes at a specific scale or set
of scales. A key scaling dynamic is that when the scale of
measurement changes, the variation within that measurement
is also subject to change (Wiens 1989; Levin 1992). For exam-
ple early biodiversity/ecosystem function research suggested
the relationship between species richness and productivity to
be “hump-shaped”, predicting peak biomass accumulation at
intermediate diversity for both primary and secondary pro-
ductivity (Rosenzweig & Abramsky 1993). However, this func-
tional form was shown to be an artefact of plot size as
opposed to any ecological process (Oksanen 1996), and a glo-
bal synthesis found mixed evidence for a generalised relation-
ship (Adler et al. 2011). Recently, long-term studies
addressing scale directly have demonstrated a positive diver-
sity-productivity relationship in multiple ecosystems (Liang
et al. 2016; Hungate et al. 2017).
Measurements of community-scale patterns, like species

richness and turnover (i.e. alpha and beta diversity), have also
been shown to vary directly with scale (Rosenzweig 1995).
Coarse grains are expected to contain higher species richness
per grain, and thus lower species turnover between grains
(Nekola & White 1999; Whittaker et al. 2001). This is because
larger grains are expected to contain more rare species and
more environmental variation (e.g. more variation in niche
space; Keil et al. 2015). Indeed, Hurlbert & Jetz (2007)

showed systematic increases in species richness at coarser
grain sizes for birds in South Africa and Australia. Similarly,
species turnover has been shown to decrease at coarser grains
for birds in Britain and North America (Mac Nally et al.
2004; Gaston et al. 2007), and for mammals in Mexico (Arita
& Rodriguez 2002).
Measurement scales likewise determine which biodiversity

patterns can be measured by EO (Fig. 1). Generally, fine-
grain sensors measure species- and community-scale patterns
like species occurrences (Immitzer et al. 2012) and taxonomic
diversity (Khare et al. 2018). Measuring species traits has pro-
ven challenging due in part to difficulties distinguishing indi-
vidual organisms in EO imagery (Nagendra et al. 2013; Jetz
et al. 2016). But some plant traits, like canopy nitrogen con-
tent and photosynthetic rates, can be measured at moderate
grain sizes (Martin et al. 2008; Serbin et al. 2014). High fre-
quency measurements can map temporally sensitive processes
like vegetation phenology (Bradley et al. 2007), but high fre-
quency, continuous measurements often come at the expense
of coarser grain sizes. Coarse grain EO sensors measure
ecosystem-scale patterns, like disturbance regime (Wang et al.
2012; Kogan et al. 2015) and ecosystem extent (Maillard et al.
2008; Bartsch et al. 2009). Satellite EO have historically
focused on measuring ecosystem-scale patterns, due to the
grain sizes of historic sensors, but the increasing number of
fine-grain EO sensors in orbit could shift EO biodiversity
mapping to focus on more species- and community-scale pat-
terns (Fig. 2; Butler 2014b).

Box 1 Terminology

• Extent: the range over which a pattern or process occurs or is expected to occur (Nekola & White 1999), such as a species
fundamental niche, or the total area measured by an EO sensor.

• Grain size: the size of the smallest individual unit of measurement (Jensen & Lulla 1987), such as a plot or transect in ecol-
ogy, or the ground sampling distance of an EO sensor.

• Biodiversity pattern: recurring and structured variation in the distributions of genes, species, communities and ecosystems.

• Ecological processes: Activities that result from interactions among organisms and between organisms and their environ-
ment (Martinez 1996).

• EO sensor: spaceborne or airborne instruments (e.g. a camera or radar) that record the electromagnetic radiation emitted
or reflected by the landscape (Campbell & Wynne 2011).

• Sensor type: general classifications of EO sensors based on the range of electromagnetic radiation measured, and how it
was measured. Sensors are typically classified as active (i.e. sensors that emit their own energy, then record the reflection of that
energy by the surface) or passive (i.e. sensors that measure energy emitted by the surface, not generated by the sensor). Radar
sensors (e.g. Sentinel-1) are an example of active microwave (1 mm to 1 m) sensors. Multispectral sensors (e.g. Landsat) are an
example of passive optical sensors that measure a range of typically visible (0.38–0.78 lm) to near-infrared (0.78–1.3 lm) or
shortwave-infrared (1.3–3 lm) wavelengths (Campbell & Wynne 2011).

• Sensor fidelity: the ability of a sensor to discriminate between land surface properties, and to discriminate signal from noise
across the dynamic range of the sensor (Campbell & Wynne 2011).

• Continuous measurements: EO measurements mapping the full geographical extent of a region without gaps.

• Discrete measurements: EO measurements mapping specific areas that do not cover the full geographical extent of a region.

• Multi-sensor fusion: integrating measurements from multiple sensors with complementary spatial and temporal characteris-
tics to characterise a single pattern (Hilker et al. 2009).

• Radiometric calibration: the conversion of raw image data (e.g. in digital number format) to units of absolute radiance (e.g.
in W m�2 sr�1 lm�1) to standardise data from multiple sensors into a common scale (Chander et al. 2009).

• Data dimensionality: the minimum number of free variables needed to represent data without information loss (Camastra
2003).
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There are key similarities in scaling dynamics between field
and EO data; grain size and extent both constrain within and
between-grain measurement variation. Large field plots tend
to contain more species per plot, and lower turnover between
plots. Likewise, large EO pixels tend to contain more organ-
isms per grain, and lower turnover between grains, constrain-
ing measurement specificity. However, the grain size of an EO
sensor places a constraint only on the smallest unit of mea-
surement; these data can be spatially aggregated to larger
scales (Fisher 1997). For example contiguous pixels measuring
the same tree could be aggregated to delineate a single crown,
or clusters of forested pixels could be aggregated to delineate
forest fragments (Yu et al. 2006). This enables comparisons
between crowns or across fragments, instead of pixels, helping
bridge the gap between spatial and biological scales. This is
known as object-based image analysis (Hay & Castilla 2008),
which is likely to become more common in biodiversity moni-
toring as novel segmentation algorithms are tuned for EO
(Krizhevsky et al. 2012; Basu et al. 2015). And though this
approach facilitates ecological interpretations of EO data,
there are key scaling dynamics associated with aggregating
data across scales.

Domains of scale

One tenet of the problem of pattern and scale in ecology sug-
gests that, since multiple ecological processes often drive spa-
tial biodiversity patterns, there is rarely a single scale at which
any pattern must be examined (Hutchinson 1953; Levin 1992).
These patterns are often examined at multiple points along
biological, spatial or temporal scale spectrums in order to
understand how multiple processes drive patterns. For exam-
ple the drivers of net primary productivity in plants could be
examined at leaf, whole plant and landscape scales. The leaf,
plant and landscape, here, represent domains of scale: the
scales over which patterns either do not change, or change
monotonically with changes in scale (Wiens 1989). In this
example, fine-scale processes, like intracrown shading, may
drive the majority of variation in leaf-scale productivity, but
may be less important at landscape scales, where ecosystem
processes like resource availability drive the majority of varia-
tion (Field et al. 1995). Partitioning biodiversity patterns into
genetic, species, community and ecosystem-scale patterns
organises them as domains of scale; the processes that drive
variation in species-scale patterns are expected to drive

Figure 2 Temporal extents of current and historic satellite sensors, coloured by biodiversity pattern type. Temporally coincident measurements can be

leveraged for analysis in a multi-sensor fusion framework to increase data dimensionality (Box 1).
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variation in ecosystem-scale patterns through separate but
potentially nested pathways (Pereira et al. 2012, 2013).
Constraining measurements and models to discrete domains

of scale is key for simplifying predictions of how species
respond to change (Field 1991). Multi-scale analyses have
been used to identify domains of scale, revealing where transi-
tions across scales has nonlinear effects on observed patterns
(Palmer & White 1994). In community ecology, hierarchical
regression models have been employed to this end (Legendre
et al. 2005). For example Keil et al. (2012) tested how beta
diversity patterns for birds, butterflies, plants, amphibians and
reptiles across Europe varied with distance, climate and land
cover. They found beta diversity (here, dissimilarity) decreased
systematically at coarser grain sizes for each taxon. Their hier-
archical analysis found climate was important for predicting
beta diversity patterns at coarse grain sizes, and land cover
was important at fine-grain sizes, though these effects varied
by taxon. Their results suggest that predicting changes in
turnover should assess multiple domains of change simultane-
ously, and that these scale dependencies are taxon-specific.
The domains of scale where processes drive patterns may

not always be known a priori, however. These are often iden-
tified using multi-scale sensitivity analysis. For example Men-
denhall et al. (2011) developed a multi-scale model to predict
how bird community composition changed with land cover
change in Costa Rica. They assessed species turnover along
tree cover gradients, finding turnover varied nonlinearly with
cover at both fine and coarse grain sizes. Their results sug-
gested there are two domains of scale over which tree cover
patterns determine turnover patterns for birds (perhaps track-
ing habitat and resource availability; Morrison et al. 2012).
Furthermore, their results suggested tree cover change could
serve as a proxy to predict turnover in other communities.
Indeed, Mendenhall et al. (2016) found tree cover change pre-
dicted changes in composition for understory plants, non-fly-
ing mammals, bats, reptiles and amphibians. Furthermore,
they found the grain size of tree cover which best predicted
turnover varied by taxon. Their work highlights one approach
to mapping biodiversity change with EO – identifying
domains of scale through multi-scale sensitivity analysis, then
modelling turnover via regression with EO-derived environ-
mental features.

MEASURING AND MODELLING PATTERNS WITH EO

There are currently two principal paradigms for mapping bio-
diversity patterns with EO (Turner et al. 2003). First is to
directly measure species, community or ecosystem-scale pat-
terns. Examples of this paradigm include identifying individ-
ual organisms within a species (Gairola et al. 2013) or
mapping the extent of an ecosystem (Henderson & Lewis
2008). Second is to model biodiversity patterns indirectly
using EO as predictive environmental features. Examples of
this paradigm include modelling species richness from mea-
surements of habitat structure (Saatchi et al. 2008), or mod-
elling species distributions and turnover using land cover
maps (Guisan & Thuiller 2005; Keil et al. 2012). Here I
review the roles of measurement type and measurement scales
in these paradigms, focusing on biodiversity patterns mapped

by current and historic spaceborne sensors that can be
accessed by biodiversity monitoring systems (Table S1).

Measuring biodiversity patterns

EO measurements of biodiversity patterns are characterised
by three key properties: sensor type, sensor fidelity and mea-
surement scales (Pettorelli et al. 2014a; O’Connor et al. 2015).
Sensor type determines which patterns can be measured, sen-
sor fidelity constrains the variation in those measurements,
and measurement scales determine the amount of variation
within and between measurements (Box 1; Jensen & Lulla
1987). Passive sensors, such as multispectral sensors and imag-
ing spectrometers, often measure patterns of ecosystem func-
tion, like leaf area index (Fensholt et al. 2004), vegetation
phenology (Fan et al. 2015) or disturbance regime (Feng et al.
2008). Active sensors, such as radio or light detection and
ranging sensors (i.e. radar and lidar), often measure patterns
of ecosystem structure, like tree height (Lefsky et al. 2005)
and ecosystem extent (Bartsch et al. 2009). These distinctions
are not axiomatic; multiple sensor types have been used to
measure the same pattern (Pohl & Van Genderen 1998). For
example both radar and multispectral sensors have been used
to measure tree cover. Radar sensors map tree cover by mea-
suring woody structural and hydrological characteristics
(Walker et al. 2010; Shimada et al. 2014), and multispectral
sensors map tree cover by measuring leaf optical properties
like pigment concentrations (Sims & Gamon 2002; Sexton
et al. 2013).
Using multiple sensors to map a single biodiversity pattern

can improve model accuracy and reduce sensor-specific uncer-
tainties, and is known as multi-sensor fusion (Box 1; Hall &
Llinas 1997). One application of this approach has been in
tree cover mapping. Though multispectral sensors are sensitive
to pigment concentrations, measuring tree cover in leaf-off
conditions remains a challenge; exposed branches are optically
similar to dried grass or other non-photosynthetic vegetation
(Asner 1998). To obviate this issue, Naidoo et al. (2016)
mapped cover in a South African savannah by combining
multispectral and radar measurements. Radar is sensitive to
woody biomass regardless of phenology. but can itself be
noisy due to speckling (Lee et al. 1994). Combining these two
sensor types, they mapped tree cover with 90% accuracy,
which was 12% higher than using either sensor independently.
Multi-sensor fusion approaches to biodiversity mapping hold
great promise for reducing sensor-specific uncertainties, and
are poised to become more valuable as access to novel sensor
types increases (Fig. 2; Butler 2014a; Schulte to B€uhne & Pet-
torelli 2018).
Comparing measurements from similar sensor types with

different grain sizes has been used to assess the importance of
scale in measuring biodiversity patterns. For example Brown
et al. (2006) compared NDVI measurements from four space-
borne multispectral sensors and found that up to 20% of the
measurement variance between sensors was driven by differ-
ences in grain size. Furthermore, Garrigues et al. (2006) found
that changes in grain size explained to up to 50% of the vari-
ance in comparisons of multi-scale leaf area index measure-
ments, which increased at coarser grains and in spatially
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heterogeneous landscapes. Comparing these spatial uncertain-
ties to the radiometric calibration uncertainties of EO sensors
(i.e. sensor fidelity), which are often between �5 and 10%
absolute radiance (Chander et al. 2009), suggests that differ-
ences in measurement scales can be similarly important as dif-
ferences in sensor fidelity for mapping biodiversity patterns.
The physical drivers of this scale dependence have been
explored with radiative transfer models, particularly for pat-
terns of ecosystem function (Asner et al. 1998; Jacquemoud
et al. 2009), but should be further quantified for other biodi-
versity patterns.

Modelling biodiversity patterns

Biodiversity patterns that are difficult to measure directly with
EO are often modelled as a function of environmental fea-
tures (Fig. 3). There are many approaches to modelling biodi-
versity patterns with EO, including models of species-scale
(Fig. 3d; Saatchi et al. 2008), community-scale (Fig. 3b; Men-
denhall et al. 2011) and ecosystem-scale biodiversity patterns
(Fig. 3c; Saatchi et al. 2007). These approaches typically
resample all data layers to a uniform grain size and extent,

occasionally after multi-scale sensitivity analysis (McGarigal
et al. 2016). Here I briefly discuss models of individual species
distributions (Guisan & Thuiller 2005) and models of commu-
nity-scale patterns like alpha and beta diversity (Rocchini
2007). These modelling methods have been reviewed elsewhere
(Gillespie et al. 2008; Rocchini et al. 2010; Pettorelli et al.
2014a), but this section reviews role of scale in these
approaches.
Species distribution models (SDMs) predict species geo-

graphical distributions across an extent as a function of envi-
ronmental features that constrain habitat availability and use
(Soberon & Peterson 2005). There have been many discussions
on feature selection in SDM (Booth et al. 2014; Brandt et al.
2017; Fourcade et al. 2018), but some key reviews have
emphasised that scale selection can play a similarly important
role (Mayor et al. 2009; McGarigal et al. 2016). Even so,
studies addressing scale directly have found equivocal results.
For example Guisan et al. (2007) modelled bird and plant dis-
tributions at multiple grain sizes, finding only small decreases
in model accuracy at coarser grain sizes on average. Disaggre-
gating these results by taxon, however, revealed significant
decreases in accuracy at coarser grains for all plants, but only

(a) (b)

(c) (d)

(grain 1)
(grain 2)
(grain n)

Fine Coarse

Fine Coarse Fine Coarse

Fine Coarse

500 m
100 m

1 km

1 km

100 m

(500 m)
(1 km)

(1 km)

(100 m)
(30 km)

(70 m)

(70 m)

Figure 3 Summary of how biodiversity patterns have been modelled using EO data. (a) Conceptual model of how EO have been used to predict

biodiversity patterns using supervised modelling approaches. (b) An example from Mendenhall et al. (2011) modelling bird community similarity as a

function of tree cover across Coto Brus, Costa Rica. (c) An example from Saatchi et al. (2007) modelling aboveground biomass distributions across

Amazonia. (d) An example from Saatchi et al. (2008) modelling tree species distributions across Amazonia.
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some birds. In addition, species with the least training data
saw the largest decreases in accuracy. Seo et al. (2009) further
explored these patterns in nine plant species, comparing both
model accuracy and the spatial patterns of distributions. They
found model accuracy decreased consistently at coarser grains,
and that these decreases were species-specific. They also found
significant spatial disagreement between models of varying
grain size for each species, which could have major conse-
quences for spatial conservation planning (Faleiro et al.
2013).
There are two principal approaches to modelling commu-

nity-scale patterns with EO. First is to predict the distribu-
tions of all species in a community, then overlay these outputs
to estimate community composition (i.e. stacked SDMs;
Thuiller et al. 2009; Calabrese et al. 2014). Second is to model
community diversity metrics via regression (Gillespie et al.
2008; Saatchi et al. 2008). As above, the role of scale in these
approaches has been equivocal. For example Thuiller et al.
(2015) modelled multiple plant community diversity metrics in
the French Alps using a stacked-SDM approach at varying
grain sizes. They found that estimates of functional diversity,
phylogenetic diversity and species richness all varied indepen-
dently with changes in grain size. Functional diversity was
best predicted at the finest grain size (250 m), whereas phylo-
genetic diversity and species richness were best predicted at
coarser grain sizes (1000 m), suggesting scale dependence at
the community scale is often process specific.
Assessing scale dependence in regression approaches has

been done by comparing species richness predictions across
multiple sensors. Nagendra et al. (2010) modelled plant spe-
cies richness using features from a fine grain, low fidelity sen-
sor (IKONOS) and a moderate grain, high fidelity sensor
(Landsat). Since community diversity metrics assess within-
and between-grain variation, one may expect that fine-grain
EO better predict these patterns. On the other hand, high fide-
lity measurements may better discriminate the between-grain
variation in environmental features that predict spatial turn-
over in communities. They found that, despite the coarser
grain size, Landsat-based models better predicted plot-level
species richness. Though the IKONOS data matched the grain
size of the field plots, they failed to meaningfully discriminate
the spatial variation in environmental features that predicted
spatial richness patterns. Further disentangling the effects of
sensor fidelity from varying measurement scales will help dis-
criminate sensor dependence from scale dependence in mod-
elling other biodiversity patterns.

Linking measurements and models

EO measurements and models of biodiversity patterns are
tightly connected. They are both subject to pattern-specific
scale dependencies, and multi-scale comparisons or sensitivity
analyses are essential for quantifying and understanding these
dependencies. Furthermore, when EO measurements are the
features used to model biodiversity patterns, scale-dependent
measurement variation becomes embedded within the models.
This might obfuscate process-driven scale dependence for vari-
ation driven by changing measurement scales. Constraining
scale-dependent variation in EO measurements of biodiversity

patterns, and disentangling this variation from variation dri-
ven by sensor fidelity, will be key for reducing uncertainties in
multi-scale modelling efforts. In the following section I review
some other challenges linking measurements and models of
biodiversity patterns, and opportunities for multi-scale analy-
ses to address these challenges.

TRANSLATING BIODIVERSITY PATTERNS ACROSS

SCALES

One central challenge linking field and EO data is overcoming
scale mismatches. These mismatches occur where response
and feature data were sampled at disparate and irreconcilable
scales. The size of field plots (i.e. the response data) are often
much smaller than the grain size of EO sensors (i.e. the fea-
ture data), which can obscure key patterns and processes
operating between these scales. For example Cleveland et al.
(2015) modelled spatial patterns of net primary productivity
across the Amazon basin using three models at three scales:
from plot data upscaled to the study extent (0.1 ha grain size),
from MODIS data collected across the full extent (1 km2

grain size) and from a community land model (12 500 km2

grain size). These methods calculated the same average net
primary productivity across the Amazon, indicating a poten-
tial convergence of processes driving forest productivity. How-
ever, results from the finer-scale methods were shown to be
spatially independent from the others, suggesting they con-
verged on the same average for different reasons. In this case,
comparing multiple models at mismatched scales that calcu-
lated the same result can make it difficult to disaggregate the
role of process from the role of scale in understanding spatial
patterns of productivity.
One key challenge in translating patterns across mismatched

scales is capturing the dynamics of intermediate-scale biodi-
versity patterns that are poorly characterised by field data.
These patterns are too rare to be characterise with field plots
alone, and are often difficult to reliably measure with coarse
grain EO. For example Fisher et al. (2008) and Chambers
et al. (2009) identified that tree falls patterns, which tend to
be both rare and spatially clustered, are underrepresented in
field plots in the Amazon. Their analyses demonstrated that
efforts to model related patterns using just field data (e.g. car-
bon sequestration) would necessarily underestimate feedbacks
from these intermediate-scale disturbances. Marvin et al.
(2014) quantified these mismatches using airborne lidar data,
finding between 44 and 85 field plots per forest type would be
required to characterise mean, community-scale carbon and
disturbance dynamics. These results suggest that, to translate
patterns across scales, field measurements should be greatly
expanded, or novel data should be used to characterise inter-
mediate-scale patterns.
The challenges presented by scale mismatches can be framed

by two tenets of the problem of pattern and scale: that multi-
ple ecological processes can drive biodiversity patterns, and
that there is rarely a single scale that best identifies how speci-
fic processes drive patterns (Wiens 1989; Levin 1992). These
tenets suggest that multi-scale analyses, which capture the
intermediate-scale patterns obscured between fine and coarse
grain patterns, could improve empirical approaches to
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mapping biodiversity patterns with EO. Iteratively modelling
patterns with multi-scale EO has been used to map a range of
biodiversity patterns at moderate grain sizes across large
extents, and presents an actionable approach to overcoming
some of the challenges presented by scale mismatches.

Multi-scale modelling

Multi-scale models attempt to obviate scale mismatches
through iteratively modelling patterns at varying grain sizes
(Fig. 4a). One key innovation of the multi-scale modelling
approach was to leverage intermediate-scale data sources that
capture the extent-wide variation in EO features, which is dif-
ficult to cover with field plots alone. For example Baccini
et al. (2012) developed a benchmark map of pantropical
aboveground biomass using a multi-scale model, a network of
field plots, discrete spaceborne lidar data (70 m) and continu-
ous, coarse grain EO (500 m; Fig. 4b). First, they calibrated
an allometric model (e.g. Chave et al. 2005) using biomass
plots coincident with lidar-derived tree height data. Next, they
applied this model to all tree height measurements, creating a
discrete, global biomass map. Finally, they modelled biomass
continuously using a regression tree model, with lidar-derived
biomass as the response and EO data on climate, topography
and ecosystem function as the environmental features. Their
final map of aboveground biomass served as a benchmark for
global carbon monitoring (Ciais et al. 2014).
Multi-scale models have also been used to monitor temporal

changes using intermediate-scale EO, overcoming some of the

challenges highlighted by Fisher et al. (2008) and Marvin
et al. (2014). For example Baccini et al. (2017) assessed tem-
poral patterns of change in aboveground biomass using EO
measurements of forest growth, disturbance and deforestation.
Intermediate-scale disturbance measurements were essential
for capturing the magnitude of change: their results revealed
that disturbance accounts for nearly 70% of forest emissions,
and that the Earth’s tropical forests are now a net source of
carbon to the atmosphere. Considering how little is known
about the rate, magnitude and direction of global biodiversity
change (Pereira et al. 2012; McGill et al. 2015), I expect these
multi-scale analyses will prove essential for settling debates
over other key knowledge gaps (e.g. Vellend et al. 2013; Gon-
zalez et al. 2016). These analyses have also proven essential
for mapping patterns that have been difficult to directly mea-
sure with EO: species traits.

Multi-scale trait mapping

Measuring species traits as a complement to species counts
has become a priority for biodiversity science. Traits have
been touted as a link between applied and theoretical biodi-
versity research and as a means to better represent ecosystem
function in Earth systems models (Shipley et al. 2006; Jetz
et al. 2016; Funk et al. 2017). Plant functional traits (PFTs)
are one subset of species traits that can be mapped using EO,
specifically by imaging spectroscopy (Kokaly et al. 2009). One
key benefit of measuring PFTs with EO is that they can be
mapped without having to identify and characterise every

(a) (b)

(grain 1)

(grain 2)
(grain n)

Fine Coarse
Fine Coarse

(77 m)

(77 m)

(500 m)

(500 m)

(100 m)

(1 km)

Figure 4 Summary of how biodiversity patterns have been modelled using EO data in a multi-scale modelling framework. (a) Conceptual model of how EO

data have been used to predict biodiversity patterns using a multi-scale modelling approach. (b) An example from Baccini et al. (2012) demonstrating the

multi-scale modelling approach for predicting tropical biomass globally. Leveraging coincident data from multiple sensors in this framework provide

opportunities to translate biodiversity patterns across scales.
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species a priori; capturing the range and variation in traits is
often more important. The prospective launches of spaceborne
imaging spectrometers, such as EnMAP, PRISMA and
HISUI, are currently touted as the best bet for mapping PFTs
globally (Stuffler et al. 2007; Galeazzi et al. 2008; Matsunaga
et al. 2011). Simulations from preparatory campaigns have
found mixed results, however. Bachmann et al. (2015) demon-
strated that the moderate fidelity of these sensors should lead
to high variation in surface reflectance measurements (the
basis for measuring PFTs). Furthermore, the moderate grain
size of these sensors (30 m) has been shown to significantly
reduce classification accuracies compared to fine-grain mea-
surements in other contexts (Kruse et al. 2011). This decrease
in accuracy is expected to be exacerbated for PFTs since
canopy structure, not trait variation, drives the majority of
reflectance signal at moderate grains (Yao et al. 2015).
These results suggest spaceborne trait measurements may not

yet provide a panacea. Fortunately, airborne imaging spectrom-
eters can measure these traits at the scales of individual organ-
isms, and these measurements can be combined with other EO
to model PFT distributions over large extents (sensu Fig. 4a).
For example Asner et al. (2016) used a multi-scale modelling
approach to map PFTs across the Peruvian Amazon. First they
measured PFTs for all canopy trees in a network of field plots,
capturing the physiological range of each trait. Next they
trained regression models using each trait as the response vari-
able, and the imaging spectroscopy data as features. These trait
models were then applied to all airborne data, which were col-
lected across gradients of elevation, geology and forest type.
Finally, they modelled these traits continuously using the air-
borne-scale trait maps as the responses, and satellite measure-
ments of ecosystem structure, ecosystem function, climate and
topography as features. Since these traits vary widely within
plots, and more so across the full study extent, the airborne-
scale trait maps were essential for capturing local-scale trait
variation across the region. The intermediate-scale maps pro-
vided more data to train the satellite-based models and, aggre-
gated to the grain size of the satellite data, obviated problems
of sampling effort and scale mismatch.
Applying these multi-scale modelling approaches could

enable monitoring similar biodiversity patterns that have
otherwise proven difficult to map over large extents. Though
access to intermediate-scale data has been historically limited,
it should increase with the launch of novel fine-grain sensors
(Fig. 2; Malenovsk�y et al. 2012). Monitoring intermediate-
scale patterns could be further bolstered by expanding the
scope of airborne mapping by groups like NEON’s Airborne
Operations Platform (Keller et al. 2008), DLR’s Optical Air-
borne Remote Sensing platform (OpAiRS; Baumgartner et al.
2012; Leutner et al. 2012), or the Carnegie Airborne Observa-
tory (CAO; Asner et al. 2012). Linking field, airborne and
spaceborne measurements could be used to map fine-scale pat-
terns like species traits across large extents, generate interme-
diate-scale data to train and test satellite measurements, and
link the distributions of community and ecosystem-scale pat-
terns to species identities (Clark et al. 2005; Baldeck et al.
2015). Furthermore, implementing large-scale airborne map-
ping efforts could be done at a fraction of the price of build-
ing and launching a satellite (Mascaro et al. 2014).

PATTERN, SCALE AND BIODIVERSITY MONITORING

Global biodiversity monitoring systems hold great promise for
biodiversity science and conservation. These systems could
help forecast the rate, magnitude and geography of biodiver-
sity change, identifying opportunities to mitigate human
impacts on biological communities. EO can support biodiver-
sity monitoring with consistent and repeat assessments of bio-
diversity change, providing a unique global perspective on our
changing biosphere. Applying concepts of pattern and scale in
ecology to EO could link these fields in support of this vision.
However, Estes et al. (2018) found little overlap in the ecology
literature between studies analysing field data and studies ana-
lysing EO data, highlighting the gap between these communi-
ties. Furthermore, problems presented by scaling dynamics
(e.g. scale mismatches) have helped frame EO science as dis-
tinct from ecology, subject to different rules and standards.
Developing an ecologically based framework for monitoring
biodiversity change with EO will require overcoming this dis-
tinction.
There are several key similarities between field and EO data:

changing their grain size or extent fundamentally alters within
and between-grain variation, there is rarely a single scale at
which any pattern should be examined, and aggregating mea-
surements to discrete domains of scale can constrain nonlinear
responses to change. These similarities frame EO as an exten-
sion of field data; their differences are more in scale than they
are in kind. Multi-scale analyses linking field and EO data
support this, emphasising that targeted field collections are
essential for mapping biodiversity patterns that are difficult to
measure independently with EO. In the context of biodiversity
monitoring with EO, field data play three key roles: training
EO to map novel biodiversity patterns; developing and testing
forecasts of biodiversity change, and constraining the extents
to which we can generalise patterns of change.
One key challenge in measuring biodiversity patterns with

EO is converting at-sensor measurements into biologically
meaningful metrics of change (e.g. from at-sensor radiance to
percent tree cover). This is often done empirically via calibra-
tion with field measurements. These calibrations require a lot
of data; EO data dimensionality is often very high (Box 1)
and the variation in biological communities that drives mea-
surement variance is similarly high. However, it is difficult for
any one research group to independently collect the field data
necessary to capture this variation. One way to overcome this
challenge is to leverage open data. Access to open biodiversity
data has increased dramatically over the past decade (Kattge
et al. 2011; Jetz et al. 2012; Metzger et al. 2013; Culina et al.
2018), as has access to open EO (Nemani et al. 2011; Irons
et al. 2012; Gorelick et al. 2017). And though there are
known spatial, temporal and taxonomic gaps in open biodi-
versity data (Beck et al. 2014; Geijzendorffer et al. 2016),
extrapolating from incomplete measurements to fill these gaps
is a key role for EO. Training global, multi-scale EO models
using centralised and curated field data could provide baseline
estimates of spatial biodiversity patterns that have been other-
wise difficult to characterise. These baselines could be tested
independently by researchers with improved local data and
local knowledge, identifying opportunities to improve regional

© 2018 John Wiley & Sons Ltd/CNRS

Reviews and Synthesis Earth observations and the ecology of scale 9



and global models. These analyses could spur modelling and
data collection efforts to fill gaps, and to develop better fore-
casting tools. These are urgently needed in ecology (Dietze
et al. 2018).
Another key role for field data is to develop and test predic-

tive, process-based models of temporal change. EO are
uniquely suited for empirically monitoring change, especially
for directly measurable patterns (e.g. disturbance; Zhu et al.
2012; Cohen et al. 2016). Yet forecasting change under condi-
tions outside the range of historic variation (e.g. under novel
climate and land-use scenarios) remains a challenge for EO.
Furthermore, temporal lags between local environmental
change and other scales of change (e.g. for species or commu-
nity-scale patterns) can obfuscate efforts to identify the
impacts of change (Essl et al. 2015). Developing process-based
models that couple temporal changes in EO to changes in
other biodiversity patterns could address these issues (Korzu-
khin et al. 1996; Adams et al. 2013). And while there are
many process-based EO models, and many process-based bio-
diversity models, we now have the technical capacity to link
and test them using open data at multiple scales, identifying
consensus models and key data gaps. Coupling process-based
models with long-term, regularly updated and globally consis-
tent measurements of change from EO could be used to
develop early warning systems for identifying where species,
communities and ecosystems will respond to change in novel
ways, and may identify opportunities for science-driven miti-
gation (Daily 1999; Scholes et al. 2008).
Finally, field data are key for constraining how we gener-

alise EO measurements and models of biodiversity change.
One advantage of monitoring change with EO is that mea-
surements are globally consistent; tree cover change can be
mapped continuously across tropical, temperate and boreal
forests (Hansen et al. 2013). This enables other models of
change that use tree cover data as features to be applied glob-
ally, such as the models of community composition in Men-
denhall et al. (2016). This would be imprecise, however; the
relationships between tree cover and community composition
in tropical countrysides may not apply to timber plantations.
In other words, this model is not stationary; the relationships
between feature and response variables can change across the
extent of the data (Hawkins 2012). The regions over which
these relationships are stationary can be considered domains
of scale, constraining the extents to which a model can gener-
alise. It is currently difficult to identify these domains of scale
with EO alone. Several algorithms can be employed to auto-
mate this task for EO (e.g. segmentation, clustering), but field
data are key for interpreting and constraining these extents to
biologically meaningful domains, and for testing their accu-
racy. Linking field and EO data to identify these domains of
scale will be central to ecologically translating knowledge of
local biodiversity patterns to regional and global scales.
After decades of work from biodiversity scientists, EO sci-

entists and conservation groups, the stage is now set to estab-
lish ambitious, science-driven biodiversity monitoring systems
and consistent, repeat and globally available EO will play a
key role in these systems. Scale is a central and unifying con-
cept for biodiversity and EO sciences, and monitoring change
with EO should be based on the principles and ecology of

scale. Global biodiversity monitoring promises to expand our
understanding of Earth’s species, communities and ecosystems
and, with luck, could help us discover the wisdom necessary
to conserve them.
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