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ABSTRACT
Background: Biogeographers assess how species distributions and abundances
affect the structure, function, and composition of ecosystems. Yet we face a major
challenge: it is difficult to precisely map species across landscapes. Novel Earth
observations could overcome this challenge for vegetation mapping. Airborne
imaging spectrometers measure plant functional traits at high resolution, and
these measurements can be used to identify tree species. In this paper, I describe a
trait-based approach to species identification with imaging spectroscopy, the Center
for Conservation Biology species identification (CCB-ID) method, which was
developed as part of an ecological data science evaluation competition.
Methods: These methods were developed using airborne imaging spectroscopy
data from the National Ecological Observatory Network (NEON). CCB-ID
classified tree species using trait-based reflectance variation and decision tree-based
machine learning models, approximating a morphological trait and dichotomous
key method inspired by botanical classification. First, outliers were removed using a
spectral variance threshold. The remaining samples were transformed using
principal components analysis (PCA) and resampled to reduce common species
biases. Gradient boosting and random forest classifiers were trained using the
transformed and resampled feature data. Prediction probabilities were calibrated
using sigmoid regression, and sample-scale predictions were averaged to the
crown scale.
Results: CCB-ID received a rank-1 accuracy score of 0.919, and a cross-entropy cost
score of 0.447 on the competition test data. Accuracy and specificity scores were high
for all species, but precision and recall scores varied for rare species. PCA
transformation improved accuracy scores compared to models trained using
reflectance data, but outlier removal and data resampling exacerbated class
imbalance problems.
Discussion: CCB-ID accurately classified tree species using NEON data,
reporting the best scores among participants. However, it failed to overcome
several species mapping challenges like precisely identifying rare species.
Key takeaways include (1) selecting models using metrics beyond accuracy (e.g.,
recall) could improve rare species predictions, (2) within-genus trait variation may
drive spectral separability, precluding efforts to distinguish between functionally
convergent species, (3) outlier removal and data resampling can exacerbate class
imbalance problems, and should be carefully implemented, (4) PCA transformation
greatly improved model results, and (5) targeted feature selection could further
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improve species classification models. CCB-ID is open source, designed for use with
NEON data, and available to support species mapping efforts.

Subjects Biogeography, Ecology, Data Mining and Machine Learning, Spatial and Geographic
Information Science
Keywords Biogeography, Species mapping, Imaging spectroscopy, Remote sensing, Modeling,
Open source

INTRODUCTION
When you get down to it, biogeographers seek to answer two key questions: where are
the species, and why are they where they are? Answering these simple questions has proven
remarkably difficult. The former reflects a data gap; we do not have complete or
unbiased information on where species occur. This is known as the “Wallacean shortfall”
(Whittaker et al., 2005; Bini et al., 2006). Addressing the latter, however, does not
necessarily require data; the drivers of species abundances and their spatial distributions
can be derived from ecological theory (McGill, 2010). But evaluating these theoretical
predictions does require data. Testing generalized theories of species distributions
requires continuously-mapped presences and absences for many individuals across
large areas. And while field efforts can assess fine-scale distribution patterns, they are often
restricted to small areas. Mapping organism-scale species distributions over large
landscapes could help fill the data gaps that preclude addressing these key biogeographic
questions (Anderson, 2018). One remote sensing dataset holds the promise to do so
for plants: airborne imaging spectroscopy.

Airborne imaging spectrometers measure variation in the biophysical properties of soils
and vegetation at fine grain sizes across large areas (Goetz et al., 1985). In vegetation
mapping, imaging spectroscopy can measure plant structural traits, like leaf area index
and leaf angle distribution (Broge & Leblanc, 2001; Asner & Martin, 2008), and plant
functional traits, like growth and defense compound concentrations (Kokaly et al., 2009;
Asner et al., 2015). These traits tend to be highly conserved within tree species, and highly
variable between species (i.e., interspecific trait variation is often much greater than
intraspecific trait variation; Townsend et al., 2007; Asner et al., 2011). This trait
conservation provides the conceptual and biophysical basis for species mapping with
imaging spectroscopy. Indeed, airborne imaging spectroscopy has been used to map
crown-scale species distributions across large extents in several contexts (Fassnacht
et al., 2016). These approaches have been applied in temperate (Baldeck et al., 2014)
and tropical ecosystems (Hesketh & Sánchez-Azofeifa, 2012), using multiple classification
methods (Feret & Asner, 2013), and multiple sensors (Clark, Roberts & Clark, 2005;
Colgan et al., 2012; Baldeck et al., 2015). However, this wide range of approaches has
not yet identified a canonical best practice for tree species identification.

In this paper, I describe an approach to tree species classification using airborne
imaging spectroscopy data that builds on the above methods and advances the discussion
on best practices. This approach was developed as a submission to an Ecological Data
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Science Evaluation competition (ECODSE; https://www.ecodse.org/) sponsored by the
National Institute of Standards and Technology. This competition had participants use
airborne imaging spectroscopy data, collected by the National Ecological Observatory
Network’s Airborne Observation Platform (NEON AOP; Kampe et al., 2010), to identify
tree crowns to the species level. The work described was submitted to the ECODSE
competition under the team name of the Stanford Center for Conservation Biology, and
has since been formalized under the moniker Center for Conservation Biology species
identification (CCB-ID) (https://github.com/stanford-ccb/ccb-id). First, I describe the
CCB-ID approach to tree species classification using airborne imaging spectroscopy data.
Next, I review its successes and shortcomings in the context of this competition. Finally, I
highlight key opportunities to improve future imaging spectroscopy-based species
classification approaches. The goals of this work are to improve NEON’s operational tree
species mapping capacity and to reduce barriers for addressing data gaps in plant
biogeography.

MATERIALS AND METHODS
CCB-ID was inspired by the botanical approache to species classification. In the field,
botanists can use plant morphological features and a dichotomous key to identify tree
species. These features often include variations in reproductive traits (e.g., flowering
bodies, seeds), vascular traits (e.g., types of woody and non-woody tissue), and
foliar traits (e.g., waxy or serrated leaves). The dichotomous key approach hierarchically
partitions species until each can be identified using a specific combination of traits.
Species classification with imaging spectroscopy is rather restricted in comparison;
imaging spectrometers can only measure a subset of plant traits. This subset includes
growth traits such as leaf chlorophyll and nitrogen content (Lepine et al., 2016),
structural traits such as leaf cellulose and water content (Papeş et al., 2010), and defense
traits such as leaf phenolic concentrations and lignin content (McManus et al., 2016).
Furthermore, the inter and intraspecific variation in this subset of traits is rarely
known a priori; this precludes the use of a standard dichotomous key (Kichenin et al.,
2013; Siefert et al., 2015).

Classifying species with imaging spectroscopy instead relies on distinguishing
species-specific variation in canopy reflectance. However, several confounding factors
drive this variation including (1) measurement conditions (e.g., sun and sensor angles), (2)
canopy structure (e.g., leaf area index or leaf angle distribution), (3) leaf morphology and
physiology (i.e., plant functional traits), and (4) sensor noise (Goetz et al., 1985; Ollinger,
2011; Lausch et al., 2016). Measurement conditions and canopy structure tend to drive the
majority of variation; up to 79–89% of spectral variance is driven by within-crown
variation (Baldeck & Asner, 2014; Yao et al., 2015). Unfortunately, this variation does not
help distinguish between species. Interspecific spectral variation is instead driven by
functional trait variation (Asner et al., 2011;Martin et al., 2018). Disentangling trait-based
variation from measurement and structure-based variation is thus central to mapping
species with imaging spectroscopy.
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CCB-ID classifies tree species using trait-based reflectance variation with decision
tree-based machine learning models. This approach approximates a morphological trait
and dichotomous key model to species mapping (Godfray, 2007), and is described in
the following sections. The first section describes the outlier removal and data
transformation procedures. The second section describes how the training data were
resampled to reduce biases towards common species. The third section describes model
selection, model training, and probability calibration. The fourth section describes
the model performance metrics, and the final section describes two analyses performed
post-ECODSE submission.

The NEON data provided in the ECODSE competition included the following products:
(1) Woody plant vegetation structure (NEON.DP1.10098), (2) Spectrometer orthorectified
surface directional reflectance–flightline (NEON.DP1.30008), (3) Ecosystem structure
(NEON.DP3.30015), and (4) High-resolution orthorectified camera imagery (NEON.
DP1.30010). These data were provided by the ECODSE group (2017; https://www.ecodse.org/)
and are freely available from the NEON website (https://neonscience.org). These analyses
used data product (2). All analyses were performed using the Python programming
language (Oliphant, 2007; https://python.org) and the following open source packages:
NumPy (Van Der Walt, Colbert & Varoquaux, 2011; http://numpy.org), scikit-learn
(Pedregosa et al., 2011; http://scikit-learn.org), pandas (McKinney, 2010;
https://pandas.pydata.org), and matplotlib (Hunter, 2007; https://matplotlib.org).
The python scripts used for these analyses have been uploaded to a public GitHub repository
(https://github.com/stanford-ccb/ccb-id), including a build script for a singularity container
to ensure computational replicability (Kurtzer, Sochat & Bauer, 2017).

Data preprocessing
The canopy reflectance data were preprocessed using two steps: outlier removal and
dimensionality reduction. In the outlier removal step, the reflectance data were spectrally
subset, transformed using principal components analysis (PCA), then thresholded to
isolate spurious values. First, reflectance values from the blue region of the spectrum
(0.38–0.49 mm) and from noisy bands (1.35–1.43 mm, 1.80–1.96 mm, and 2.48–2.51 mm)
were removed. These bands correspond to wavelengths dominated by atmospheric water
vapor, and do not track variations in plant traits (Gao et al., 2009; Asner et al., 2015).
This reduced the data from 426 to 345 bands. Next, these spectrally-subset samples were
transformed using PCA. The output components were whitened to zero mean and unit
variance, and outliers were identified using a three-sigma threshold. Samples with
values outside of +/- three standard deviations from the means (i.e., which did not fall
within 99.7% of the variation for each component) for the first 20 principal components
were excluded from analysis. These samples were expected to contain non-vegetation
spectra (e.g., exposed soil), unusually bright or dark spectra, or anomalously noisy spectra
(Féret & Asner, 2014). The outlier-removed reflectance profiles for each species are shown
in Fig. 1.

Once the outliers were removed, the remaining spectra were transformed using PCA.
This was not performed on the already-transformed data from the outlier removal process,
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but on the outlier-removed, spectrally-subset reflectance data. PCA transformations are
often applied to airborne imaging spectrometer data to handle the high degree of correlation
between bands, and these transformations are highly sensitive to input feature variation
(Jia & Richards, 1999). Furthermore, transforming reflectance data into principal
components can isolate the variation driven by measurement conditions from variation
driven by functional traits; this is critical for distinguishing between species. And though
trait-based variation drives a small proportion of total reflectance signal, a single trait can be
expressed in up to nine orthogonal components (Asner et al., 2015). After the
transformation, the first 100 of 345 possible components were used as feature vectors
for the species classification models. This threshold was arbitrary; it was set to capture the
majority of biologically-relevant components and to exclude noisy components.
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Figure 1 Per-species canopy reflectance profiles. (A–H) Canopy reflectance profiles for the eight tree
species analyzed, with mean reflectance values in black and +/- 1 standard deviation values in color.
(I) Mean reflectance values for all species, with each color corresponding to the individual species panels.
Though the mean reflectance signals show high interspecific variation, the high intraspecific variation
complicates classification efforts. Full-size DOI: 10.7717/peerj.5666/fig-1
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Class imbalance
Class imbalance refers to datasets where the number of samples per class are not evenly
distributed among classes. Imbalanced datasets are common in classification contexts,
but can lead to problems if left unaddressed. Training classification models with
imbalanced data can select for models that overpredict common classes when model
performance is based on accuracy metrics. The ECODSE data were imbalanced:
after outlier removal, these data contained a total of 6,034 samples from nine classes
(eight identified species, one “other species” class). The most common species,
Pinus palustris, contained 4,026 samples (66% of the samples) and the rarest species,
Liquidambar styraciflua, contained 62 samples (1% of the samples).

These data were resampled prior to analysis to reduce the likelihood of overpredicting
common species. Resampling was performed by setting a fixed number of samples per
class, then undersampling or oversampling each class to that fixed number. This fixed
number was set to 400 samples to split the difference of two orders of magnitude between
the rarest and the most common classes. This number was arbitrary, but it approximates
the number of per-species samples recommended in Baldeck & Asner (2014).
To create the final training data, classes with fewer than 400 samples were oversampled
with replacement, and classes with more than 400 samples were undersampled without
replacement. The final training data included 400 samples for each of the nine classes
(3,600 samples total). Each sample contained a feature vector of the principal
components derived from the outlier removed, spectrally subset canopy reflectance data.

Model selection, training, and probability calibration
CCB-ID used two machine learning models: a gradient boosting classifier and a random
forest classifier (Friedman, 2001; Breiman, 2001). These models can fit complex, non-linear
relationships between response and feature data, can automatically handle interactions
between features, and have built-in mechanisms to reduce overfitting (Mascaro et al.,
2014). They were selected because they perform well in species mapping contexts (Elith,
Leathwick & Hastie, 2008), in remote sensing contexts (Pal, 2005), and in conjunction with
PCA transformations (Rodríguez, Kuncheva & Alonso, 2006). Furthermore, these models
are built as ensembles of decision trees, resembling the dichotomous key employed by
botanists. Unlike a dichotomous key, these models were trained to learn where to split the
data since the trait variation that distinguishes species was not known a priori.

These models were fit using hyper-parameter tuning and probability calibration
procedures. Model hyper-parameters were tuned by selecting the parameters that
maximized mean F1 scores in fivefold cross-validation using an exhaustive grid search.
F1 score calculates the weighted average of model precision and recall (see Model
assessment), and maximizing F1 scores during model tuning reduces the likelihood of
selecting hyper-parameters that overpredict common classes and underpredict rare classes.
The following parameters were tuned for both models: number of estimators,
maximum tree depth, minimum number of samples required to split a node, and
minimum node impurity split threshold. The learning rate and node split quality
criterion were also tuned for the gradient boosting and random forest classifiers,
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respectively. All samples were used for hyper-parameter tuning, and the best model
hyper-parameters (i.e., the hyper-parameters that maximized mean F1 scores in
cross-validation) were used to fit the final models.

Accurately characterizing prediction probabilities is essential for error propagation
and for assessing model reliability. Prediction probabilities were calibrated after the
final hyper-parameters were selected. Well-calibrated probabilities should scale linearly
with the true rate of misclassification (i.e., model predictions should not be under or
overconfident). Some ensemble methods, such as random forest, tend to be poorly
calibrated. Since ensemble methods average their predictions from a set of weak learners,
which individually have high misclassification rates but gain predictive power
post-ensemble, model variance can skew high probabilities away from one, and low
probabilities away from zero. This results in sigmoid-shaped reliability diagrams (DeGroot
& Fienberg, 1983; Niculescu-Mizil & Caruana, 2005).

To reduce these biases, prediction probabilities were calibrated using sigmoid regression
for both the gradient boosting and random forest classifiers. The data were first randomly
split into three subsets: model training (50%, or 200 samples per class), probability
calibration training (25%, or 100 samples per class), and probability calibration testing (the
remaining 25%). Each classifier was fit using the model training subset and the tuned
hyper-parameters. Prediction probabilities were calibrated with sigmoid regression using
the probability training subset and internal threefold cross-validation to assess the
calibration. Calibrated model performance was assessed using the holdout test data. After
these assessments, the final models were fit using the model training data, then calibrated
using the full probability training and testing data (i.e., the full 50% of samples not used in
initial model training).

Model assessment
During model training, performance was assessed on a per-sample basis using model
accuracy and log loss scores. Model accuracy calculates the proportion of correctly
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Figure 2 Model performance metrics. Visual representation of the classification model metrics cal-
culated on a per-species basis. A confusion matrix was computed for each species, and each metric was
calculated in a one-vs.-all fashion. Full-size DOI: 10.7717/peerj.5666/fig-2
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classified samples in the test data (Fig. 2), and high model accuracy scores are desirable.
Log loss assesses whether the prediction probabilities were well calibrated, penalizing
incorrect and uncertain predictions. Low log loss scores indicate that misclassifications
occur at rates close to the rates of predicted probabilities. During model testing,
performance was assessed using rank-1 accuracy and cross-entropy cost (Marconi
et al., 2018). Rank-1 accuracy was calculated based on which species ID was predicted
with the highest probability. The cross-entropy score is similar to the log loss function,
but was scaled using an indicator function. These can be interpreted in similar
ways to accuracy and log loss; high rank-1 accuracy and low cross-entropy scores are
desirable (Hastie, Tibshirani & Friedman, 2009).

Secondary model testing metrics were calculated for each species using the test data.
These included model specificity, precision, and recall (Fig. 2). These metrics reveal
model behavior that accuracy scores may obscure. Specificity assesses model performance
on non-target species, penalizing overprediction of the target species (i.e., a high number
of false positives). Precision also penalizes overprediction, but assesses the rate of
overprediction relative to the rate of true positive predictions. Recall calculates the
proportion of true positive predictions to the total number of positive observations
per species. Higher values are desirable for each. These metrics were calculated to aid
interpretation, but were not used to formally rank model performance.

Performance during model training was assessed at the sample scale, meaning the
model performance metrics were calculated on every pixel (i.e., sample) in the
training data. However, the competition evaluation metrics were calculated using
crown-scale prediction probabilities, meaning the model performance metrics were
calculated after aggregating each pixel from individual trees to unique crown identities.
To address this scale mismatch, prediction probabilities were first calculated for each
sample in a crown using both gradient boosting and random forest models.
These sample-scale probabilities were then averaged by crown.

Further analyses
Two post-submission analyses were performed to assess how PCA transformations
affected model performance. Prior to these analyses, I bootstrapped the original model
fits to assess their variance. I then compared these bootstrapped fits to models trained
with the spectrally-subset reflectance data instead of the PCA transformed data. Next,
I compared models trained using a varying number of principal components. These models
were trained using npcs ∈ {10, 20, : : : , 345} as the input features, with 345 being the
maximum number of potential components after spectral subsetting. These comparisons
assessed whether the PCA transformations improved model performance, and how
changing the amount of spectral variation in the feature data affected performance.
These analyses were each bootstrapped 50 times.

RESULTS
CCB-ID performed well according to the ECODSE competition metrics, receiving a rank-1
accuracy score of 0.919, and a cross-entropy cost score of 0.447 on the test data. These were
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the highest rank-1 accuracy and the lowest cross-entropy cost scores among participants.
Other methods reported rank-1 accuracy scores from 0.688 to 0.88 and cross-entropy
scores from 0.877 to 1.448 (Marconi et al., 2018). A confusion matrix with the classification
results is reported in Table 1. In addition to the high rank-1 accuracy and low cross-
entropy cost scores, the CCB-ID model performed well according to the secondary crown-
scale performance metrics. These secondary metrics calculated a mean accuracy score of
0.979, mean specificity score of 0.985, mean precision score of 0.614, and mean recall score
of 0.713 across all species. The per-species secondary metrics are summarized in Fig. 3.
These results were calculated using the categorical classification predictions (i.e., after
assigning ones to the species with the highest predicted probability, and zeros to all other
species). The probability-based confusion matrix and classification metrics are reported
in Table S1 and Fig. S1, respectively.

During model training, outlier removal excluded 797 samples from analysis. A total
of 264 of the 797 samples (33%) removed from analysis were from P. palustris, while
the remaining 533 samples (67%) were from non-P. palustris species. Outlier removal
disproportionately excluded samples from uncommon species; 45% of samples from
L. styraciflua, the rarest species, were removed. After outlier removal, the first principal
component contained 78% of the explained variance. However, this component
did not drive model performance; it ranked 7th and 11th in terms of ranked feature
importance scores for the gradient boosting and random forest classifiers. Model accuracy
scores, calculated on a sample basis (i.e., not by crown) using the 25% training data holdout,
were 0.933 for gradient boosting and 0.956 for random forest. Log loss scores, calculated
prior to probability calibration, were 0.19 for gradient boosting, and 0.47 for random forest.
After probability calibration, log loss scores were 0.24 for gradient boosting and 0.16 for
random forest. The per-class secondary metrics reported a mean specificity score of 0.987,
mean precision score of 0.908, and mean recall score of 0.907 across all species.

Table 1 Confusion matrix of classification results.

Predicted

Species ID Acer
rubrum

Liquidambar
styraciflua

Other Pinus
elliottii

Pinus
palustris

Pinus
taeda

Quercus
geminata

Quercus
laevis

Quercus
nigra

Observed

Acer rubrum 1 0 0 0 0 0 0 0 1

Liquidambar
styraciflua

0 1 0 0 0 0 0 0 0

Other 1 1 1 0 0 0 0 0 0

Pinus elliottii 0 0 0 0 1 1 0 0 0

Pinus palustris 0 0 0 2 81 0 0 1 0

Pinus taeda 0 0 1 0 0 4 1 0 0

Quercus geminata 0 0 0 0 0 0 4 0 0

Quercus laevis 0 0 0 0 1 0 0 22 0

Quercus nigra 0 0 0 0 0 0 0 0 1

Notes:
Binary classification results of the CCB-ID model on the competition test data. These metrics were calculated using the independent crown data.
Bold entries highlight correct model predictions.
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A) B)

Figure 4 Spectral variance and model performance. The effects of increasing spectral variance on
model performance through altering the number of principal component features. These plots show
the mean (solid) and standard deviation (shaded) of (A) model accuracy and (B) log loss scores for
each classification method. Scores were calculated on holdout data from the training set, not the
competition test data. These results suggest that using all available spectral variance (i.e., all principal
components) may decrease model performance. RFC stands for random forest classifier and GBC
stands for gradient boosting classifier. Full-size DOI: 10.7717/peerj.5666/fig-4

O
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Figure 3 CCB-ID model performance. Per-species secondary performance metrics from the test data.
These metrics were calculated using the binary confusion matrix reported in Table 1. Metrics weighted by
the true negative rate (i.e., accuracy and specificity) were high for all species since the models correctly
predicted the most common species, Pinus palustris. However, metrics weighted by the true positive rate
(i.e., precision and recall) were much more variable since there were only one to six observed crowns for
seven of the nine species (P. palustris and Quercus laevis had 84 and 23 crowns, respectively). This penalized
misclassifications of rare species. These metrics were recalculated using the per-crown prediction probabilities,
and can be found in Fig. S1. Full-size DOI: 10.7717/peerj.5666/fig-3
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The post-submission analyses found PCA transformations improved model accuracy.
Models fit using the original methods calculated mean bootstrapped accuracy scores
of 0.944 (s = 0.009) for gradient boosting and 0.955 (s = 0.008) for random forest.
Models fit using the spectrally-subset reflectance data as features calculated mean accuracy
scores of 0.883 (s = 0.012) for gradient boosting and 0.877 (s = 0.011) for random forest,
and mean log loss scores of 0.46 (s = 0.03) for gradient boosting and 0.48 (s = 0.03)
for random forest. Mean model accuracies declined and mean log loss scores increased
after including more than 20 components as features for the models fit using varying
numbers of principal components (Fig. 4).

DISCUSSION
CCB-ID accurately classified tree species using NEON imaging spectroscopy data,
reporting the highest rank-1 accuracy score and lowest cross-entropy cost score among
ECOSDE participants. These scores compare favorably to other imaging spectroscopy-
based species classification efforts (Fassnacht et al., 2016). These crown-scale test results
highlight the potential to develop species mapping methods that approximate botanical
and taxonomic approaches to classification. However, this method failed to overcome
several well-known species mapping challenges, like precisely identifying rare species. Below
I discuss some key takeaways and suggest opportunities to improve future imaging
spectroscopy-based species classification approaches.

The high per-species accuracy scores indicate a high proportion of correctly classified
crowns in the test data. However, accuracy can be a misleading metric in imbalanced
contexts. Since seven of the nine classes had six or fewer crowns in the test data
(out of 126 total test crowns), classification metrics weighted by the true negative rate
(i.e., accuracy and specificity) were expected to be high if the majority class were correctly
predicted. Metrics weighted instead by the true positive rate (i.e., precision and recall)
showed much higher variation across rare species, as a single misclassification greatly
alters these metrics when there are few observed crowns (Fig. 3). Due to the small sample
size, it is difficult to assess if these patterns portend problems at larger scales. For example,
there were two observed Acer rubrum crowns in the test data, yet only one was
correctly predicted. Was the misclassified crown an anomaly? Or will this low precision
persist across the landscape, predicting A. rubrum occurrences at half its actual frequency?
The latter seems unlikely, in this case; the low cross-entropy and log loss scores
suggest misclassified crowns were appropriately uncertain in assigning the wrong label
(Table S1). However, since airborne species mapping is employed to address large-scale
ecological patterns where precision is key (e.g., in biogeography, macroecology, and
biogeochemistry), we should be assessing classification performance on more than one
or two crowns per species.

Comparing model performance between and within taxonomic groups revealed notable
patterns. Quercus and Pinus individuals (i.e., Oaks and Pines) accounted for 120 of the
126 test crowns and there was high fidelity between them. Only one Quercus crown
was misclassified as Pinus, and two Pinus crowns were misclassified as Quercus.
From a botanical perspective, this makes sense; these genera exhibit very different growth
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forms (i.e., different canopy structures and foliar traits), and should thus be easy to
distinguish in reflectance data. However, within-genus model performance varied
between Quercus and Pinus. Quercus crowns were never misclassified as other Quercus
species, yet there were several within-Pinus misclassifications. This may be because
Quercus species tightly conserve their canopy structures and foliar traits (Cavender-Bares
et al., 2016), while Pinus species may express trait plasticity. Pinus species maintain
similar growth forms (i.e., their needles grow in whorls bunched through the canopy),
perhaps limiting opportunities to distinguish species-specific structural variation.
Furthermore, they are distributed across the varying climates of the southern, eastern,
and central United States, suggesting some degree of niche plasticity. If this plasticity is
expressed in each species’ functional traits, then convergence among species may then
preclude trait-based classification efforts. Quantifying the extent to which foliar traits are
conserved within and between species and genera will be essential for assessing the
potential for imaging spectroscopy to map community composition across large extents
(Violle et al., 2012; Siefert et al., 2015).

The post-submission analyses revealed further notable patterns. First, PCA
transformation increased mean model accuracy scores compared to the spectrally-subset
reflectance data. I suspect this is because the models could focus on the spectral variation
driven by biologically meaningful components instead of searching for that signal
in the reflectance spectrum where the majority of variation is driven by abiotic factors.
The low feature importance scores of the first principal component support this
interpretation. The first component in reflectance data is typically driven by brightness
(i.e., not a driver of interspecific variation) and contained 78% of the explained reflectance
variance, but ranked low in feature importance for both models. This preprocessing
transformation approximates the “rotation forest” approach developed by Rodríguez,
Kuncheva & Alonso (2006), who found PCA preprocessing improved tree-based ensemble
models in several contexts. They suggested retaining all components to maintain the
original dimensionality of the input data. However, the analysis that varied the number
of feature components showed model accuracy decreased when including more than
the first 20 components (Fig. 4). This suggests that using all components overfits to noise.
Performing feature selection on transformed data may help overcome this. Feature
selection has been applied to reflectance data to find the spectral features that
track functional trait variation (Feilhauer, Asner & Martin, 2015), and I believe it could
help identify trait-based components that discriminate between species. Furthermore,
other transformation methods may be more appropriate than PCA; principal
components serve only as proxies for functional traits in this context. I expect
transforming reflectance data directly into trait features, further extending the analogy of a
taxonomic approach to classification, could improve species mapping efforts, improve
model interpretability, and further develop the biophysical basis for species mapping with
imaging spectroscopy.

Despite the successes of CCB-ID, there were several missteps in model design and
implementation. For example, outlier removal and resampling were employed to
reduce class imbalance problems but may instead have exacerbated them. First, the
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PCA-based outlier removal excluded samples based on deviation from the mean of each
component. However, since the transformations were calculated using imbalanced
data, the majority of the variance was driven by variation in the most common class.
This means outlier removal excluded samples that deviated too far from the
mean-centered variance weighted by P. palustris. Indeed, 533 of the 797 samples excluded
from analysis (67%) were from non-P. palustris species (which comprised only 37% of
the full dataset). This removed up to 45% of samples from the rarest species (L. styraciflua),
reducing the spectral variance these models should be trained to identify. This suggests
outlier removal should either be skipped or implemented using other methods
(e.g., using spectral mixture analysis to identify samples with high soil fractions) to
reduce imbalance for rare species.

Data resampling further exacerbated class imbalance. By setting the resampling
threshold an order of magnitude above the least sampled class, the rarest species were
oversampled nearly 10-fold in model training. This oversampling inflated per-class model
performance metrics by double-counting (or more) correctly classified samples for
oversampled species. These metrics were further inflated as a result of how the train/test
data were split. The split was performed after resampling, meaning the train/test data
for oversampled species were likely not independent. This invalidated their use as true test
data, overestimating performance during model training. This is unequivocally bad
practice; I call this “user error.” Undersampling the common species was also detrimental.
Excluding samples from common species meant the models were exposed to less
intraspecific spectral variation during training. This is a key source of variation the
models should recognize. Excluding this spectral variation made it more difficult for
the models to distinguish inter and intraspecific variation. Assigning sample weights
(e.g., proportional to the number of samples per class) and using actually independent
holdout data could overcome these issues. These will be implemented in future versions
of CCB-ID. However, these need not be the only updates to this method; CCB-ID is
an open source, freely available project (https://github.com/stanford-ccb/ccb-id).
I invite you to use it and improve it.

CONCLUSIONS
It was not always possible to classify tree species from airplanes; now it is. Airborne
imaging spectrometers can map tree species at crown scales across large areas, and these
data are now publicly available through NEON. However, there is currently no canonical
imaging spectroscopy-based species mapping approach, limiting opportunities to
explore key patterns in biogeography. The CCB-ID approach was developed to address
this gap and to further the conversation on best practices for species mapping. CCB-ID
performed well within the scope of the ECODSE competition, reporting the highest
rank-1 accuracy and lowest cross-entropy scores among participants. Yet further testing
is necessary to identify whether this method can scale to other regions (e.g., to high
diversity forests). I hope CCB-ID will be used to improve future species mapping efforts
to pursue answers to biogeography’s great mysteries of where the species are, and why
they are there.

Anderson (2018), PeerJ, DOI 10.7717/peerj.5666 13/18

https://github.com/stanford-ccb/ccb-id
http://dx.doi.org/10.7717/peerj.5666
https://peerj.com/


ACKNOWLEDGEMENTS
I would like to thank Gretchen Daily for her continued advisement, support, and
inspiration. Thanks to the organizers of the NSF NEON workshop on mapping species,
foliar chemistry and soil properties with spectroscopy, including Nancy Glenn, Nathan
Leisso, Jessica Mitchell, Yi Qi, and Dar Roberts. Thanks to two anonymous reviewers
for their insightful comments. Thanks to Phil Brodrick for being good at models, and even
better at explaining them. Finally, thanks to Jeff Smith for comments on this manuscript,
and for fruitful conversations on hyperspectral image mixing.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
C. B. Anderson was supported by the Bing-Mooney Fellowship in Environmental Science
and Conservation at Stanford University’s Department of Biology. The ECODSE
competition was supported, in part, by a research grant from NIST IAD Data Science
Research Program to D.Z. Wang, E.P. White, and S. Bohlman, by the Gordon and
Betty Moore Foundation’s Data-Driven Discovery Initiative through grant GBMF4563 to
E.P. White, and by an NSF Dimension of Biodiversity program grant (DEB-1442280)
to S. Bohlman. The National Ecological Observatory Network is a program sponsored
by the National Science Foundation and operated under cooperative agreement by
Battelle Memorial Institute. This material is based in part upon work supported by the
National Science Foundation through the NEON Program. There was no additional
external funding received for this study. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Bing-Mooney Fellowship in Environmental Science and Conservation at Stanford
University’s Department of Biology.
NIST IAD Data Science Research Program.
Gordon and Betty Moore Foundation’s Data-Driven Discovery Initiative through grant
GBMF4563.
NSF Dimension of Biodiversity program grant (DEB-1442280).
National Ecological Observatory Network is a program sponsored by the National Science
Foundation and operated under cooperative agreement by Battelle Memorial Institute.
National Science Foundation through the NEON Program.

Competing Interests
The author declares that they have no competing interests.

Author Contributions
� Christopher B. Anderson conceived and designed the experiments, performed the
experiments, analyzed the data, contributed reagents/materials/analysis tools, prepared
figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.

Anderson (2018), PeerJ, DOI 10.7717/peerj.5666 14/18

http://dx.doi.org/10.7717/peerj.5666
https://peerj.com/


Data Availability
The following information was supplied regarding data availability:

The raw data used in this analysis were provided by the “NIST DSE Plant Identification
with NEON Remote Sensing Data” competition. These data are hosted on
Zenodo: ECODSE group. (2017). ECODSE competition training set [Data set]. Zenodo.
http://doi.org/10.5281/zenodo.1206101.

The code used to processes these data is the CCB-ID package. It is hosted on
GitHub: https://github.com/stanford-ccb/ccb-id.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.5666#supplemental-information.

REFERENCES
Anderson CB. 2018. Biodiversity monitoring, earth observations and the ecology of scale.

Ecology Letters 21(10):1572–1585 DOI 10.1111/ele.13106.

Asner GP, Martin RE. 2008. Spectral and chemical analysis of tropical forests: scaling from leaf to
canopy levels. Remote Sensing of Environment 112(10):3958–3970
DOI 10.1016/j.rse.2008.07.003.

Asner GP, Martin RE, Anderson CB, Knapp DE. 2015. Quantifying forest canopy traits:
imaging spectroscopy versus field survey. Remote Sensing of Environment 158:15–27
DOI 10.1016/j.rse.2014.11.011.

Asner GP, Martin RE, Knapp DE, Tupayachi R, Anderson C, Carranza L, Martinez P,
Houcheime M, Sinca F, Weiss P. 2011. Spectroscopy of canopy chemicals in humid tropical
forests. Remote Sensing of Environment 115(12):3587–3598 DOI 10.1016/j.rse.2011.08.020.

Baldeck CA, Asner GP. 2014. Improving remote species identification through efficient training
data collection. Remote Sensing 6(4):2682–2698 DOI 10.3390/rs6042682.

Baldeck CA, Asner GP, Martin RE, Anderson CB, Knapp DE, Kellner JR, Wright SJ. 2015.
Operational tree species mapping in a diverse tropical forest with airborne imaging
spectroscopy. PLOS ONE 10(7):e0118403 DOI 10.1371/journal.pone.0118403.

Baldeck CA, Colgan MS, Féret JB, Levick SR, Martin RE, Asner GP. 2014. Landscape-scale
variation in plant community composition of an African savanna from airborne species
mapping. Ecological Applications: Ecological Society of America 24(1):84–93
DOI 10.1890/13-0307.1.

Bini LM, Diniz-Filho JAF, Rangel TFLVB, Bastos RP, Pinto MP. 2006. Challenging Wallacean
and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity
hotspot. Diversity Distributions 12(5):475–482 DOI 10.1111/j.1366-9516.2006.00286.x.

Breiman L. 2001. Random forests. Machine Learning 45:5–32 DOI 10.1023/A:1010933404324.

Broge NH, Leblanc E. 2001. Comparing prediction power and stability of broadband and
hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll
density. Remote Sensing of Environment 76(2):156–172 DOI 10.1016/S0034-4257(00)00197-8.

Cavender-Bares J, Meireles JE, Couture JJ, Kaproth MA, Kingdon CC, Singh A, Serbin SP,
Center A, Zuniga E, Pilz G, Townsend PA. 2016. Associations of leaf spectra with genetic
and phylogenetic variation in oaks: prospects for remote detection of biodiversity.
Remote Sensing 8(3):221 DOI 10.3390/rs8030221.

Anderson (2018), PeerJ, DOI 10.7717/peerj.5666 15/18

http://doi.org/10.5281/zenodo.1206101
https://github.com/stanford-ccb/ccb-id
http://dx.doi.org/10.7717/peerj.5666#supplemental-information
http://dx.doi.org/10.7717/peerj.5666#supplemental-information
http://dx.doi.org/10.1111/ele.13106
http://dx.doi.org/10.1016/j.rse.2008.07.003
http://dx.doi.org/10.1016/j.rse.2014.11.011
http://dx.doi.org/10.1016/j.rse.2011.08.020
http://dx.doi.org/10.3390/rs6042682
http://dx.doi.org/10.1371/journal.pone.0118403
http://dx.doi.org/10.1890/13-0307.1
http://dx.doi.org/10.1111/j.1366-9516.2006.00286.x
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/S0034-4257(00)00197-8
http://dx.doi.org/10.3390/rs8030221
http://dx.doi.org/10.7717/peerj.5666
https://peerj.com/


Clark ML, Roberts DA, Clark DB. 2005. Hyperspectral discrimination of tropical rain forest
tree species at leaf to crown scales. Remote Sensing of Environment 96(3–4):375–398
DOI 10.1016/j.rse.2005.03.009.

Colgan MS, Baldeck CA, Féret J-B, Asner GP. 2012. Mapping savanna tree species at
ecosystem scales using support vector machine classification and BRDF correction on
airborne hyperspectral and LiDAR data. Remote Sensing 4(11):3462–3480
DOI 10.3390/rs4113462.

DeGroot MH, Fienberg SE. 1983. The comparison and evaluation of forecasters.
Journal of the Royal Statistical Society. Series D (The Statistician) 32(1/2):12–22
DOI 10.2307/2987588.

ECODSE group. 2017. ECODSE competition training set. Zenodo DOI 10.5281/zenodo.1206101.

Elith J, Leathwick JR, Hastie T. 2008. A working guide to boosted regression trees.
Journal of Animal Ecology 77(4):802–813 DOI 10.1111/j.1365-2656.2008.01390.x.

Fassnacht FE, Latifi H, Stere�nczak K, Modzelewska A, Lefsky M, Waser LT, Straub C, Ghosh A.
2016. Review of studies on tree species classification from remotely sensed data. Remote Sensing
of Environment 186:64–87 DOI 10.1016/j.rse.2016.08.013.

Feilhauer H, Asner GP, Martin RE. 2015. Multi-method ensemble selection of spectral
bands related to leaf biochemistry. Remote Sensing of Environment 164:57–65
DOI 10.1016/j.rse.2015.03.033.

Feret J-B, Asner GP. 2013. Tree species discrimination in tropical forests using airborne imaging
spectroscopy. IEEE Transactions on Geoscience and Remote Sensing: IEEE Geoscience and
Remote Sensing Society 51(1):73–84 DOI 10.1109/TGRS.2012.2199323.

Féret J-B, Asner GP. 2014. Mapping tropical forest canopy diversity using high-fidelity
imaging spectroscopy. Ecological Applications: Ecological Society of America 24(6):1289–1296
DOI 10.1890/13-1824.1.

Friedman JH. 2001. Greedy function approximation: a gradient boosting machine.
Annals of Statistics 29:1189–1232.

Gao B-C, Montes MJ, Davis CO, Goetz AFH. 2009. Atmospheric correction algorithms for
hyperspectral remote sensing data of land and ocean. Remote Sensing of Environment
113:S17–S24 DOI 10.1016/j.rse.2007.12.015.

Godfray HCJ Jr. 2007. Linnaeus in the information age. Nature 446(7133):259–260
DOI 10.1038/446259a.

Goetz AFH, Vane G, Solomon JE, Rock BN. 1985. Imaging spectrometry for earth remote
sensing. Science 228(4704):1147–1153 DOI 10.1126/science.228.4704.1147.

Hastie T, Tibshirani R, Friedman J. 2009. Unsupervised learning. In: Hastie T, Tibshirani R,
Friedman J, eds. The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
New York: Springer, 485–585.

Hesketh M, Sánchez-Azofeifa GA. 2012. The effect of seasonal spectral variation on species
classification in the Panamanian tropical forest. Remote Sensing of Environment 118:73–82
DOI 10.1016/j.rse.2011.11.005.

Hunter JD. 2007. Matplotlib: a 2D graphics environment. Computing in Science & Engineering
9(3):90–95 DOI 10.1109/MCSE.2007.55.

Jia X, Richards JA. 1999. Segmented principal components transformation for efficient
hyperspectral remote-sensing image display and classification. IEEE Transactions on
Geoscience and Remote Sensing: IEEE Geoscience and Remote Sensing Society 37(1):538–542
DOI 10.1109/36.739109.

Anderson (2018), PeerJ, DOI 10.7717/peerj.5666 16/18

http://dx.doi.org/10.1016/j.rse.2005.03.009
http://dx.doi.org/10.3390/rs4113462
http://dx.doi.org/10.2307/2987588
http://dx.doi.org/10.5281/zenodo.1206101
http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x
http://dx.doi.org/10.1016/j.rse.2016.08.013
http://dx.doi.org/10.1016/j.rse.2015.03.033
http://dx.doi.org/10.1109/TGRS.2012.2199323
http://dx.doi.org/10.1890/13-1824.1
http://dx.doi.org/10.1016/j.rse.2007.12.015
http://dx.doi.org/10.1038/446259a
http://dx.doi.org/10.1126/science.228.4704.1147
http://dx.doi.org/10.1016/j.rse.2011.11.005
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/36.739109
http://dx.doi.org/10.7717/peerj.5666
https://peerj.com/


Kampe TU, Johnson BR, Kuester MA, Keller M. 2010. NEON: the first continental-scale
ecological observatory with airborne remote sensing of vegetation canopy biochemistry and
structure. Journal of Applied Remote Sensing 4(1):043510 DOI 10.1117/1.3361375.

Kichenin E, Wardle DA, Peltzer DA, Morse CW, Freschet GT. 2013. Contrasting effects of plant
inter- and intraspecific variation on community-level trait measures along an environmental
gradient. Functional Ecology 27(5):1254–1261 DOI 10.1111/1365-2435.12116.

Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA. 2009. Characterizing canopy
biochemistry from imaging spectroscopy and its application to ecosystem studies.
Remote Sensing of Environment 113:S78–S91 DOI 10.1016/j.rse.2008.10.018.

Kurtzer GM, Sochat V, Bauer MW. 2017. Singularity: scientific containers for mobility of
compute. PLOS ONE 12(5):e0177459 DOI 10.1371/journal.pone.0177459.

Lausch A, Bannehr L, Beckmann M, Boehm C, Feilhauer H, Hacker JM, Heurich M, Jung A,
Klenke R, Neumann C, Pause M, Rocchini D, Schaepman ME, Schmidtlein S, Schulz K,
Selsam P, Settele J, Skidmore AK, Cord AF. 2016. Linking earth observation and taxonomic,
structural and functional biodiversity: local to ecosystem perspectives. Ecological Indicators
70:317–339 DOI 10.1016/j.ecolind.2016.06.022.

Lepine LC, Ollinger SV, Ouimette AP, Martin ME. 2016. Examining spectral reflectance
features related to foliar nitrogen in forests: implications for broad-scale nitrogen mapping.
Remote Sensing of Environment 173:174–186 DOI 10.1016/j.rse.2015.11.028.

Marconi S, Graves SJ, Gong D, Nia MS, Le Bras M, Dorr BJ, Fontana P, Gearhart J,
Greenberg C, Harris DJ, Kumar SA, Nishant A, Prarabdh J, Rege SU, Bohlman SA,
White EP, Wang DZ. 2018. A data science challenge for converting airborne
remote sensing data into ecological information. PeerJ Preprints 6:e26966v1
DOI 10.7287/peerj.preprints.26966v1.

Martin RE, Chadwick KD, Brodrick PG, Carranza-Jimenez L, Vaughn NR, Asner GP. 2018.
An approach for foliar trait retrieval from airborne imaging spectroscopy of tropical forests.
Remote Sensing 10(2):199 DOI 10.3390/rs10020199.

Mascaro J, Asner GP, Knapp DE, Kennedy-Bowdoin T, Martin RE, Anderson C, Higgins M,
Chadwick KD. 2014. A tale of two “forests”: random forest machine learning aids tropical forest
carbon mapping. PLOS ONE 9:e85993 DOI 10.1371/journal.pone.0085993.

McGill BJ. 2010. Towards a unification of unified theories of biodiversity. Ecology Letters
13(5):627–642 DOI 10.1111/j.1461-0248.2010.01449.x.

McKinney W. 2010. Data structures for statistical computing in python. In: Proceedings of the 9th
Python in Science Conference, Austin, 51–56.

McManus KM, Asner GP, Martin RE, Dexter KG, Kress WJ, Field CB. 2016. Phylogenetic
structure of foliar spectral traits in tropical forest canopies. Remote Sensing 8(3):196
DOI 10.3390/rs8030196.

Niculescu-Mizil A, Caruana R. 2005. Predicting good probabilities with supervised learning.
In: Proceedings of the 22nd international conference on machine learning ICML ‘05,
New York: ACM, 625–632.

Oliphant TE. 2007. Python for scientific computing. Computing in Science & Engineering
9(3):10–20 DOI 10.1109/MCSE.2007.58.

Ollinger SV. 2011. Sources of variability in canopy reflectance and the convergent properties of
plants. New Phytologist 189(2):375–394 DOI 10.1111/j.1469-8137.2010.03536.x.

Pal M. 2005. Random forest classifier for remote sensing classification. International Journal of
Remote Sensing 26(1):217–222 DOI 10.1080/01431160412331269698.

Anderson (2018), PeerJ, DOI 10.7717/peerj.5666 17/18

http://dx.doi.org/10.1117/1.3361375
http://dx.doi.org/10.1111/1365-2435.12116
http://dx.doi.org/10.1016/j.rse.2008.10.018
http://dx.doi.org/10.1371/journal.pone.0177459
http://dx.doi.org/10.1016/j.ecolind.2016.06.022
http://dx.doi.org/10.1016/j.rse.2015.11.028
http://dx.doi.org/10.7287/peerj.preprints.26966v1
http://dx.doi.org/10.3390/rs10020199
http://dx.doi.org/10.1371/journal.pone.0085993
http://dx.doi.org/10.1111/j.1461-0248.2010.01449.x
http://dx.doi.org/10.3390/rs8030196
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1111/j.1469-8137.2010.03536.x
http://dx.doi.org/10.1080/01431160412331269698
http://dx.doi.org/10.7717/peerj.5666
https://peerj.com/


Papeş M, Tupayachi R, Martínez P, Peterson AT, Powell GVN. 2010. Using hyperspectral
satellite imagery for regional inventories: a test with tropical emergent trees in the Amazon
basin. Journal of Vegetation Science 21(2):342–354 DOI 10.1111/j.1654-1103.2009.01147.x.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M,
Perrot M, Duchesnay É. 2011. Scikit-learn: machine learning in Python. Journal of Machine
Learning Research 12:2825–2830.

Rodríguez JJ, Kuncheva LI, Alonso CJ. 2006. Rotation forest: a new classifier ensemble method.
IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10):1619–1630
DOI 10.1109/TPAMI.2006.211.

Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW,
Baraloto C, Carlucci MB, Cianciaruso MV, De L Dantas V, De Bello F, Duarte LD,
Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V,
Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJ, Lagerström A,
Bagousse-Pinguet YL, Li Y, Mason N, Messier J, Nakashizuka T, Overton JM, Peltzer DA,
Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C,
Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA. 2015. A global meta-analysis
of the relative extent of intraspecific trait variation in plant communities. Ecology Letters
18:1406–1419 DOI 10.1111/ele.12508.

Townsend AR, Cleveland CC, Asner GP, Bustamante MMC. 2007. Controls over foliar N:P ratios in
tropical rain forests. Ecology 88(1):107–118 DOI 10.1890/0012-9658(2007)88[107:COFNRI]2.0.CO;2.

Van Der Walt S, Colbert SC, Varoquaux G. 2011. The NumPy array: a structure for efficient
numerical computation. Computing in Science & Engineering 13(2):22–30
DOI 10.1109/MCSE.2011.37.

Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J. 2012.
The return of the variance: intraspecific variability in community ecology. Trends in Ecology &
Evolution 27(4):244–252 DOI 10.1016/j.tree.2011.11.014.

Whittaker RJ, Araújo MB, Jepson P, Ladle RJ, Watson JEM, Willis KJ. 2005.
Conservation biogeography: assessment and prospect. Diversity and Distributions 11:3–23
DOI 10.1111/j.1366-9516.2005.00143.x.

Yao W, Van Leeuwen M, Romanczyk P, Kelbe D, Van Aardt J. 2015. Assessing the impact of
sub-pixel vegetation structure on imaging spectroscopy via simulation. In: Algorithms and
Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI (SPIE 9472).
Bellingham: SPIE DOI 10.1117/12.2176992.

Anderson (2018), PeerJ, DOI 10.7717/peerj.5666 18/18

http://dx.doi.org/10.1111/j.1654-1103.2009.01147.x
http://dx.doi.org/10.1109/TPAMI.2006.211
http://dx.doi.org/10.1111/ele.12508
http://dx.doi.org/10.1890/0012-9658(2007)88[107:COFNRI]2.0.CO;2
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1016/j.tree.2011.11.014
http://dx.doi.org/10.1111/j.1366-9516.2005.00143.x
http://dx.doi.org/10.1117/12.2176992
http://dx.doi.org/10.7717/peerj.5666
https://peerj.com/

	The CCB-ID approach to tree species mapping with airborne imaging spectroscopy
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


