elapid.utils¶
Backend helper and convenience functions.
check_raster_alignment(raster_paths)
¶
Checks whether the extent, resolution and projection of multiple rasters match exactly.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
raster_paths |
list
|
a list of raster covariate paths |
required |
Returns:
Type | Description |
---|---|
bool
|
whether all rasters align |
Source code in elapid/utils.py
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|
count_raster_bands(raster_paths)
¶
Returns the total number of bands from a list of rasters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
raster_paths |
list
|
List of raster data file paths. |
required |
Returns:
Name | Type | Description |
---|---|---|
n_bands |
int
|
total band count. |
Source code in elapid/utils.py
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
|
create_output_raster_profile(raster_paths, template_idx=0, windowed=True, nodata=None, count=1, compress=None, driver='GTiff', bigtiff=True, dtype='float32')
¶
Gets parameters for windowed reading/writing to output rasters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
raster_paths |
list
|
raster paths of covariates to apply the model to |
required |
template_idx |
int
|
index of the raster file to use as a template. template_idx=0 sets the first raster as template |
0
|
windowed |
bool
|
perform a block-by-block data read. slower, but reduces memory use |
True
|
nodata |
Number
|
output nodata value |
None
|
count |
int
|
number of bands in the prediction output |
1
|
driver |
str
|
output raster file format (from rasterio.drivers.raster_driver_extensions()) |
'GTiff'
|
compress |
str
|
compression type to apply to the output file |
None
|
bigtiff |
bool
|
specify the output file as a bigtiff (for rasters > 2GB) |
True
|
dtype |
str
|
rasterio data type string |
'float32'
|
Returns:
Type | Description |
---|---|
(windows, profile)
|
an iterable and a dictionary for the window reads and the raster profile |
Source code in elapid/utils.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
|
download_sample_data(dir, name='ariolimax', quiet=False)
¶
Downloads sample raster and vector files from a web server.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dir |
str
|
the directory to download the data to |
required |
name |
str
|
the sample dataset to download. options include: "ariolimax" button's banana slug dataset |
'ariolimax'
|
quiet |
bool
|
disable the progress bar |
False
|
Returns:
Type | Description |
---|---|
None
|
None. Downloads files to |
Source code in elapid/utils.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
|
format_band_labels(raster_paths, labels=None)
¶
Verify the number of labels matches the band count, create labels if none passed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
raster_paths |
list
|
count the total number of bands in these rasters. |
required |
labels |
List[str]
|
a list of band labels. |
None
|
Returns:
Name | Type | Description |
---|---|---|
labels |
creates default band labels if none are passed. |
Source code in elapid/utils.py
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
|
get_raster_band_indexes(raster_paths)
¶
Counts the number raster bands to index multi-source, multi-band covariates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
raster_paths |
list
|
a list of raster paths |
required |
Returns:
Type | Description |
---|---|
(nbands, band_idx)
|
int and list of the total number of bands and the 0-based start/stop band index for each path |
Source code in elapid/utils.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
get_tqdm()
¶
Returns a context-appropriate tqdm progress tracking function.
Determines the appropriate tqdm based on the user context, as behavior changes inside/outside of jupyter notebooks.
Returns:
Name | Type | Description |
---|---|---|
tqdm |
Callable
|
the context-specific tqdm module |
Source code in elapid/utils.py
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
|
in_notebook()
¶
Evaluate whether the module is currently running in a jupyter notebook.
Source code in elapid/utils.py
240 241 242 |
|
load_object(path, compressed=True)
¶
Reads a python object into memory that's been saved to disk.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
str
|
the file path of the object to load |
required |
compressed |
bool
|
flag to specify whether the file was compressed prior to saving |
True
|
Returns:
Name | Type | Description |
---|---|---|
obj |
Any
|
the python object that has been saved (e.g., a MaxentModel() instance) |
Source code in elapid/utils.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
|
load_sample_data(name='ariolimax', drop_geometry=False)
¶
Loads example species presence/background and covariate data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
the sample dataset to load. options include: "ariolimax" button's banana slug dataset "bradypus" from the R 'maxnet' package |
'ariolimax'
|
Returns:
Type | Description |
---|---|
(x, y)
|
a tuple of dataframes containing covariate and response data, respectively |
Source code in elapid/utils.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
|
make_band_labels(n_bands)
¶
Creates a list of band names to assign as dataframe columns.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_bands |
int
|
total number of raster bands to create labels for. |
required |
Returns:
Name | Type | Description |
---|---|---|
labels |
list
|
list of column names. |
Source code in elapid/utils.py
296 297 298 299 300 301 302 303 304 305 306 307 308 |
|
n_digits(number)
¶
Counts the number of significant integer digits of a number.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
number |
Number
|
the number to evaluate. |
required |
Returns:
Name | Type | Description |
---|---|---|
order |
int
|
number of digits required to represent a number |
Source code in elapid/utils.py
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|
repeat_array(x, length=1, axis=0)
¶
Repeats a 1D numpy array along an axis to an arbitrary length
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
array
|
the n-dimensional array to repeat |
required |
length |
int
|
the number of times to repeat the array |
1
|
axis |
int
|
the axis along which to repeat the array (valid values include 0 to n+1) |
0
|
Returns:
Type | Description |
---|---|
ndarray
|
An n+1 dimensional numpy array |
Source code in elapid/utils.py
26 27 28 29 30 31 32 33 34 35 36 37 |
|
save_object(obj, path, compress=True)
¶
Writes a python object to disk for later access.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obj |
object
|
a python object or variable to be saved (e.g., a MaxentModel() instance) |
required |
path |
str
|
the output file path |
required |
Source code in elapid/utils.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|
square_factor(n)
¶
Compute a square form-factor to fit n
items.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n |
int
|
the number of items to fit into a square. |
required |
Returns:
Type | Description |
---|---|
tuple
|
(x, y) tuple of the square dimensions. |
Source code in elapid/utils.py
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
|